Решение плоской задачи О.К. Мора

Прямая задача Мора

Прямая задача Мора – это задача определения напряжений на произвольной площадке по известным главным напряжениям.

Рассмотрим элементарный объем, находящийся в условиях объемного напряженного состояния, причем грани этого объема являются главными площадками. Секущей площадкой, параллельной главному напряжению σ2, выделим из этого объема треугольную призму:

Решение плоской задачи О.К. Мора - student2.ru

Для определения напряжений на произвольной секущей площадке, рассмотрим переднюю грань призмы

Решение плоской задачи О.К. Мора - student2.ru

Запишем уравнения равновесия для системы сил, действующей на грани призмы.

Для оси, касательной к наклонной площадке Решение плоской задачи О.К. Мора - student2.ru :

Решение плоской задачи О.К. Мора - student2.ru .

Сокращая общие множители и умножая все слагаемые на Решение плоской задачи О.К. Мора - student2.ru , получим

Решение плоской задачи О.К. Мора - student2.ru ,

Решение плоской задачи О.К. Мора - student2.ru . (2.2)

Для оси, нормальной к наклонной площадке Решение плоской задачи О.К. Мора - student2.ru :

Решение плоской задачи О.К. Мора - student2.ru ,

откуда

Решение плоской задачи О.К. Мора - student2.ru .

Проведем следующие преобразования:

Решение плоской задачи О.К. Мора - student2.ru

и получим:

Решение плоской задачи О.К. Мора - student2.ru . (2.3)

Возведем в квадрат каждую часть полученных выражений (2.2) и (2.3):

Решение плоской задачи О.К. Мора - student2.ru ,

Решение плоской задачи О.К. Мора - student2.ru .

Суммируя попарно левые и правые части, получим:

Решение плоской задачи О.К. Мора - student2.ru .

Это уравнение в координатах t-s является уравнением окружности с центром в точке Решение плоской задачи О.К. Мора - student2.ru , Решение плоской задачи О.К. Мора - student2.ru и радиусом Решение плоской задачи О.К. Мора - student2.ru :

Решение плоской задачи О.К. Мора - student2.ru

Полученная окружность называется кругом напряжений или кругом Мора. Круг Мора пересекает ось абсцисс в точках с координатами s1 и s3.

Определим координаты точки Da:

Решение плоской задачи О.К. Мора - student2.ru , (2.4)

Решение плоской задачи О.К. Мора - student2.ru , (2.5)

что совпадает с полученными ранее формулами (2.2) и (2.3).

Таким образом, каждой площадке, наклоненной под углом a к главным площадкам, на круге Мора соответствует определенная точка. Радиус этой точки составляет с осью абсцисс угол 2a, а ее координаты определяют напряжения на площадке sa и ta.

Задача.

В стержне с площадью поперечного сечения A=5х104 м2, растягиваемом силой F = 50 кН, определить нормальное и касательное напряжения, возникающие на площадке, наклоненной под углом Решение плоской задачи О.К. Мора - student2.ru к поперечному сечению стержня:

Решение плоской задачи О.К. Мора - student2.ru

В точках поперечного сечения возникают только нормальные напряжения, то есть площадка элементарного объема в окрестностях точки, совпадающая с этим сечением, является главной:

Решение плоской задачи О.К. Мора - student2.ru

Решение плоской задачи О.К. Мора - student2.ru ,

остальные главные напряжения отсутствуют, т.е. это одноосное напряженное состояние.

Найдем напряжения на наклонной площадке.

Решение плоской задачи О.К. Мора - student2.ru

Вектор полного напряжения p, действующий на этой площадке, можно разложить на две составляющие: нормальную sa и касательную ta, для определения величины которых воспользуемся кругом Мора.

Наносим в координатах t-s точки, соответствующие главным напряжениям Решение плоской задачи О.К. Мора - student2.ru и Решение плоской задачи О.К. Мора - student2.ru , и на этих точках, как на диаметре, строим круг Мора:

Решение плоской задачи О.К. Мора - student2.ru

Откладывая от оси абсцисс против часовой стрелки двойной угол a, получаем на круге точку, отображающую состояние на наклонной площадке. Координаты этой точки являются искомыми напряжениями и вычисляются по формулам (2.4) и (2.5):

Решение плоской задачи О.К. Мора - student2.ru , Решение плоской задачи О.К. Мора - student2.ru .

Обратная задача Мора

Обратная задача Мора состоит в определении главных напряжений по известным напряжениям на произвольной площадке. Рассмотрим её на конкретном примере.

Задача.

Определить главные напряжения в опасной точке стержня, подвергающегося совместному действию изгиба и кручения:

Решение плоской задачи О.К. Мора - student2.ru

Построив эпюры внутренних силовых факторов, заключаем, что опасным сечением стержня является сечение заделки, в котором действует наибольший по величине изгибающий момент Mx.

Для нахождения опасной точки в опасном сечении рассмотрим распределение нормальных и касательных напряжений по опасному сечению:

Решение плоской задачи О.К. Мора - student2.ru

В данном случае имеется две равноопасные точки – B и C, в которых действуют максимальные нормальные и касательные напряжения, одинаковые по величине, но разные по направлению. Рассмотрим напряженное состояние в точке В, выделив в её окрестности элементарный объем и расставив вектора напряжений Решение плоской задачи О.К. Мора - student2.ru и Решение плоской задачи О.К. Мора - student2.ru на его гранях.

Решение плоской задачи О.К. Мора - student2.ru

Величины напряжений Решение плоской задачи О.К. Мора - student2.ru и Решение плоской задачи О.К. Мора - student2.ru можно определить по формулам:

Решение плоской задачи О.К. Мора - student2.ru ,

Решение плоской задачи О.К. Мора - student2.ru .

Рассмотрим выделенный куб со стороны грани, свободной от напряжений (сверху):

Решение плоской задачи О.К. Мора - student2.ru

Обозначим две взаимно перпендикулярные площадки a и b. На площадке a действуют нормальное Решение плоской задачи О.К. Мора - student2.ru и касательное напряжение Решение плоской задачи О.К. Мора - student2.ru . На площадке b действуют только касательное напряжение Решение плоской задачи О.К. Мора - student2.ru (согласно закону парности касательных напряжений).

Порядок построения круга Мора:

1. В системе координат t-s нанести точки с координатами Решение плоской задачи О.К. Мора - student2.ru (sa, ta) и Решение плоской задачи О.К. Мора - student2.ru (sb, tb). При этом нормальное напряжение считается положительным, если оно вызывает растяжение, а касательное – если оно действует по часовой стрелке относительно центра элемента.

2. Соединить полученные точки Da и Db отрезком. Точка пересечения этого отрезка с осью абсцисс O является центром круга Мора.

3. Построить окружность с центром в точке O и радиусом ODa. Координаты точек пересечения окружности с осью абсцисс дают величины главных напряжений (в нашем случае s1, и s3).

4. Пересечение площадок a (горизонталь) и b (вертикаль) дает положение полюса площадок круга Мора Pпл (точка, в которой пересекаются все площадки).

5. Провести из полюса Pпл лучи через точки (s1, 0) и (s3, 0). Эти лучи задают положение главных площадок.

Решение плоской задачи О.К. Мора - student2.ru

Наносим положение главных площадок и направление главных напряжений на рассматриваемую площадку:

Решение плоской задачи О.К. Мора - student2.ru

Радиус круга Мора

Решение плоской задачи О.К. Мора - student2.ru ,

тогда главные напряжения

Решение плоской задачи О.К. Мора - student2.ru ,

Решение плоской задачи О.К. Мора - student2.ru .

Наши рекомендации