Обучение дошкольников решению задач проходит через ряд взаимосвязанных между собой этапов.
Первый этап — подготовительный. Основная цель этого этапа — организовать систему упражнений по выполнению операций над множествами. Так, подготовкой к решению задач на сложение являются упражнения по объединению множеств. Упражнения на выделение части множества проводятся для подготовки детей к решению задач на вычитание. С помощью операций над множествами раскрывается отношение «часть — целое», доводится до понимания смысл выражений «больше на...», «меньше на...». Учитывая наглядно-действенный и наглядно-образный характер мышления детей, следует оперировать такими множествами, элементами которых являются конкретные предметы. Воспитатель предлагает детям отсчитать и положить на карточку шесть грибов, а затем добавить еще два гриба. «Сколько всего стало грибов? (Дети считают.) Почему их стало восемь? К шести грибам прибавили два (показывает на предметах) и получили восемь. На сколько стало больше грибов?» Подобные упражнения проводятся и на выделение части множества. В качестве наглядной основы для понимания отношений между частями и целым могут применяться диаграммы Эйлера — Венна, в которых эти отношения изображаются графически.
На втором этапе нужно учить детей составлять задачи и подводить к усвоению их структуры. Детей учат устанавливать связи между данными и искомым и на этой основе выбирать для решения необходимое арифметическое действие. Подводить к пониманию структуры задачи лучше всего на задачах-драматизациях. Воспитатель знакомит детей со словом задача и при разборе составленной задачи подчеркивает необходимость числовых данных и вопросов: «Что известно?», «Что нужно узнать?». На этом этапе обучения составляются такие задачи, в которых вторым слагаемым или вычитаемым является число 1. Это важно учитывать, чтобы не затруднять детей поиском способов решения задачи. Прибавить или вычесть число 1 они могут на основе имеющихся у них знаний об образовании последующего или предыдущего числа. Например, воспитатель просит ребенка принести и поставить в стакан семь флажков, а в другой — один флажок. Эти действия и будут содержанием задачи, которую составляет воспитатель. Текст задачи произносится так, чтобы было четко отделено условие, вопрос и числовые данные. Составленную задачу повторяют двое-трое детей. Воспитатель при этом должен следить, чтобы дети не забывали числовые данные, правильно формулировали вопрос.
При обучении дошкольников составлению задач важно показать, чем отличается задача от рассказа, загадки, подчеркнуть значение и характер вопроса.Обучающее значение приведенных выше задач на сложение и вычитание состоит не столько в том, чтобы получить ответ, а в том, чтобы научить анализировать задачу и в результате этого правильно выбрать нужное арифметическое действие.
Итак, на втором этапе работы над задачами дети должны: а) научиться составлять задачи; б) понимать их отличие от рассказа и загадки; в) понимать структуру задачи; г) уметь анализировать задачи, устанавливая отношения между данными и искомым.
Учить детей формулировать арифметические действия сложения и вычитания — задача третьего этапа. На предыдущей ступени дошкольники без затруднения находили ответ на вопрос задачи, опираясь на свои знания, после этого нужно познакомить с арифметическими действиями сложения и вычитания, раскрыть их смысл, научить формулировать их и «записывать»1 с помощью цифр и знаков в виде числового примера. Прежде всего детей надо научить формулировать действие нахождения суммы по двум слагаемым при составлении задачи по конкретным данным (пять рыбок слева и одна справа). «Мальчик поймал пять карасей и одного окуня», —говорит Саша. «Сколько рыбок поймал мальчик?» — формулирует вопрос Коля. Воспитатель предлагает детям ответить на вопрос. Выслушав ответы нескольких детей, он задает им новый вопрос: «Как вы узнали, что мальчик поймал шесть рыбок?» Дети отвечают, как правило, по-разному: «Увидели», «Сосчитали», «Мы знаем, что пять да один будет шесть» и т. п. Теперь можно перейти к рассуждениям: «Больше стало рыбок или меньше, когда мальчик поймал еще одну?» «Конечно, больше!» — отвечают дети. «Почему?» — «Потому что к пяти рыбкам прибавили еще одну рыбку». Воспитатель поощряет этот ответ и формулирует арифметическое действие: «Дима правильно сказал, надо сложить два числа, названные в задаче. К пяти рыбкам прибавить одну рыбку. Это называется действием сложения. Теперь мы будем не только отвечать на вопрос задачи, но и объяснять, какое действие мы выполняем».
На основе предложенного наглядного материала составляются еще одна-две задачи, с помощью которых дети продолжают учиться формулировать действие сложения и давать ответ на вопрос.
На первых занятиях словесная формулировка арифметического действия подкрепляется практическими действиями: «К трем красным кружкам прибавим один синий кружок и получим четыре кружка». Но постепенно арифметическое действие следует отвлекать от конкретного материала: «Какое число прибавили к какому?» Теперь уже при формулировке арифметического действия числа не именуются. Спешить с переходом к оперированию отвлеченными числами не следует. Такие абстрактные понятия, как «число», «арифметическое действие», становятся доступными лишь на основе длительных упражнений детей с конкретным материалом. Когда дети усвоят в основном формулировку действия сложения, переходят к обучению формулировке вычитания. Работа проводится аналогично тому, как это описано выше.
При формулировке арифметического действия можно считать правильным, когда дети говорят отнять, прибавить, вычесть, сложить. Слова сложить, вычесть, получится, равняется являются специальными математическими терминами. Этим терминам соответствуют бытовые слова прибавить, отнять, стало, будет. Разумеется, бытовые слова ближе опыту ребенка и начинать обучение можно, с них. Но желательно, чтобы воспитатель в своей речи пользовался математической терминологией, постепенно приучая и детей к употреблению этих слов. Например, ребенок говорит: «Нужно отнять из пяти яблок одно», а воспитатель должен уточнить: «Нужно из пяти яблок вычесть одно яблоко».
Упражняя детей в формулировке арифметического действия, полезно предлагать задачи с одинаковыми числовыми данными на разное действие. Например: «У Саши было три воздушных шара. Один шар улетел. Сколько шаров осталось?» Или: «Коле подарили три книги и одну машину. Сколько подарков получил Коля?» Устанавливается, что это задачи на одно и то же действие. Важно при этом обращать внимание на правильную и полную формулировку ответа на вопрос задачи.
Можно показывать задачи и внешне похожие, но требующие выполнения разных арифметических действий. Например: «На дереве сидели четыре птички, одна птичка улетела. Сколько птичек осталось на дереве?» Или: «На дереве сидели четыре птички. Прилетела еще одна. Сколько птичек сидит на дереве?» Хорошо, когда подобные задачи составляются одновременно и детьми.
На основе анализа данных задач дети приходят к выводу, что хотя в обеих задачах речь идет об одинаковом количестве птичек, но они выполняют разные действия. В одной задаче одна птичка улетает, а в другой — прилетает, поэтому в одной задаче числа нужно сложить, а в другой — вычесть одно из другого. Вопросы в задачах различны, поэтому различны и арифметические действия, различны ответы. Такое сопоставление задач, их анализ полезны детям, так как они лучше усваивают как содержание задач, так и смысл арифметического действия, обусловленного содержанием.
Проследим динамику вопросов воспитателя к детям для формулировки арифметического действия. На первых занятиях задается развернутый вопрос, содержание которого близко к содержанию вопроса к задаче: «Что надо сделать, чтобы узнать, сколько птичек сидит на дереве?» Затем вопрос формулируется в более общем виде: «Что надо сделать, чтобы решить эту задачу?» Или: «Что надо сделать, чтобы ответить на вопрос задачи?»
Воспитатель не должен мириться с односложными ответами детей (отнять, прибавить). Выполненное арифметическое действие должно быть сформулировано полно и правильно. Очень важно вовлекать всех детей в обдумывание наиболее точного ответа.
Поскольку к моменту обучения решению задач дети уже знакомы с цифрами и знаками +, —, =, следует упражнять их в записи арифметического действия и учить читать запись (3+ 1 =4). (К трем птичкам прибавить одну птичку. Получится четыре птички.) Умение читать запись обеспечивает возможность составления задач по числовому примеру. Например, на доске запись: 10 — 1=? Воспитатель предлагает прочитать запись и сказать, что обозначает этот знак (?). Затем просит составить задачу, в которой заданы такие же числа, как на доске. Педагог следит при этом, чтобы содержание задач было разнообразным и интересным, чтобы в них правильно ставился вопрос. Для решения выбирается самая интересная задача. Кто-то из детей повторяет ее. Дети, выделяя данные и искомое в задаче, называют арифметическое действие, решают задачу и записывают решение у себя на бумаге. Кто-то из детей формулирует ответ задачи. Проведенная беседа приучает ребят логически мыслить, учит правильно строить ответы на поставленные вопросы — о теме, сюжете задачи, о числовых данных и их отношениях, обосновывать выбор арифметического действия.
Для упражнения детей в распознавании записей на сложение и вычитание воспитателю рекомендуется использовать несколько числовых примеров и предлагать детям их прочесть. По указанным примерам составляются задачи на разные арифметические действия, при этом детям предлагается сделать самостоятельно запись решенных задач, а затем прочесть ее. Обязательно нужно исправить ответы детей, допустивших ошибки в записи. Читая запись, дети скорее обнаруживают свою ошибку. Запись действий убеждает детей в том, что во всякой задаче всегда имеются два числа, по которым надо найти третье — сумму или разность.
Н. И. Непомнящая и Л. П. Клюева рекомендуют другой способ записи арифметического действия. Авторы предложили знакомить детей с моделью, помогающей усвоить обобщенное понятие арифметического действия (сложения и вычитания) как отношения части и целого. Эта модель записи арифметических действий способствует переходу от восприятия конкретных связей и отношений между частями и целым множеством к модели изображения связей и отношений арифметических действий с помощью условных и математических знаков. Модель записи является промежуточным звеном при переходе от графического изображения отношений между множествами к числовому равенству.
Дети уже знакомы со знаками плюс ( + ), минус ( —), равняется ( = ), теперь их знакомят с моделью записи арифметического действия условными значками целое — круг, часть целого — полукруг и учат составлять равенство.
В процессе обучения следует составлять и решать задачи на сложение и вычитание величин. В качестве наглядного материала используются шнуры, тесемка, ленты, мягкая проволока и другие предметы, подлежащие измерению, а также условные мерки разного размера и др. ..
Дети уже знакомы со способами и приемами измерения величин (длина, масса) и умеют пользоваться такими правильными выражениями, как отрезок веревки, отрезок тесьмы (но не кусок веревки, тесьмы).
Приведем пример такой задачи. Вывешивается картина с изображением куклы, в руках у которой корзина с выстиранным бельем. Перед куклой два колышка, между которыми надо натянуть веревку для развешивания на ней белья. На фланелеграфе изображены два колышка, между которыми следует натянуть веревку. Ребенок должен вынуть из корзины веревку, чтобы натянуть ее между колышками, но она оказывается мала, и тогда он должен взять другой отрезок веревки и соединить ее с первой так, чтобы длина веревки была достаточной для натягивания между колышками. Детям предлагают рассмотреть картину и составить по ней задачу. Для этого надо прежде всего измерить длину обоих отрезков веревки. Отрезки веревок измеряются: один отрезок равен шести меркам, а другой — одной. Составляется задача: один отрезок веревки, взятый для того, чтобы натянуть ее между колышками, оказался недостаточным, в нем было шесть мерок. Взяли другой отрезок, равный одной мерке, и соединили его с первым отрезком. Сколько мерок в длине всей веревки? Воспитатель предлагает сделать запись, чтобы были видны известное и неизвестное числа; Дети формулируют действие и результат, дают ответ на вопрос задачи.
Воспитателю далее следует предложить подумать, нельзя ли по этой картине составить и другую задачу. Дети предлагают сначала измерить длину всей веревки и длину одного из отрезков веревки, чтобы можно было вычесть длину отрезка веревки от длины всей веревки и получить длину второго отрезка. Составляется новая задача на действие вычитания, в которой неизвестным числом становится длина второго отрезка. Следует отметить, что опыт, приобретенный детьми в процессе измерения величин, находит применение и при составлении задач.
Итак, работа над задачами не только обогащает детей новыми знаниями, но и дает богатый материал для умственного развития.