То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

5. Теорема о среднем. Если функция f(x) непрерывна на отрезке [а; b], то существует точка с Î [a.;b] такая, что

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru

6. Если функция f(x) сохраняет знак на отрезке [а; b], где а <b, то интеграл То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru имеет тот же знак, что и функция. Так, если То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru на отрезке [а; b], то То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

7. Неравенство между непрерывными функциями на отрезке [а;b],(а < b) можно интегрировать. Отметим, что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и M — соответственно наименьшее и наибольшее значения функции у = f(x) на отрезке [а;b], (а < b), то

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru где a<b.

10. Пусть функция y=f(x) непрерывна на отрезке [a;b]. Рассмотрим интеграл То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru . Значение интеграла зависит от обоих пределов интегрирования a и b.

Теорема. Производная от интеграла по верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, то есть

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru . Данная теорема означает, что функция То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru является первообразной для То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru . Из этой теоремы следует, что всякая непрерывная функция То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru имеет первообразные, одной из которых является интеграл То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

Формула Ньютона – Лейбница.

Простым и удобным методом вычисления определенного интеграла То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru от непрерывной функции является формула Ньютона-Лейбница:

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

Применяется этот метод во всех случаях, когда может быть найдена первообразная функции F(x) для подынтегральной функции То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

Методы вычислений определенного интеграла: непосредственное интегрирование; интегрирование подстановкой; интегрирование по частям.

Интегрирование по частям

Теорема. Если функции То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru и То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru имеют непрерывные производные на отрезке То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru , то имеет место формула

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru (5.3.1)

Формула (2) называется формулой интегрирования по частям для определенного интеграла

Интегрирование методом подстановки

Пусть для вычисления интеграла То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru от непрерывной функции f(x) сделана подстановка То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

Теорема. Если:

1. Функция То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru и ее производная То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru непрерывны при То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru

2. Множеством значений функции То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru при То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru является отрезок То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru

3. То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru и То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru ,

то

То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru . (2.5.1)

Формула (5.2.1) называется формулой замены переменной в определенном интеграле.

Отметим, что: 1. При вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется; 2. Часто вместо подстановки То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru применяют подстановку t = g(x);

Непосредственное интегрирование представляет собой метод, основанный на свойствах интеграла.

Приложение определенного интеграла: формулы площадей плоских фигур, длины кривой, объема ткл вращения.

Площади фигур в декартовой системе координат

Площадь фигуры, ограниченной кривыми То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru и То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru , прямыми х = а и х = b (при То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru ) можно найти по формуле То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

Если плоская фигура имеет «сложную» форму, то прямыми, параллельными оси Оу, ее следует разбить на части так, чтобы можно было бы применить уже известные формулы.

Если криволинейная трапеция ограничена прямыми у = с и у = d, осью Оу и непрерывной кривой То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru , то ее площадь находится по формуле То есть интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности). - student2.ru .

Наши рекомендации