Урав плоскости, проходящей через данную точку перпендик-рно даному вектору. Общ урав плоскости. Урав плоскости в отрезках.
Ур-е в плоскости, проходящей через данную точку, перпендикулярно заданному вектору.
N-вектор нормали
M0M{x-x0,y-y0,z-z0}
Для того, чтобы точка MÎP, необходимо и достаточно чтобы вектора N^M0M(т.е. N*M0M=0)
A(x-x0)+B(y-y0)+С(z-z0)=0 - ур-е плоскости, проходящей через данную точку ^вектору.
Общее уравнение плоскости.
Ax+By+Сz-Ax0-By0-Сz0=0
-Ax0-By0-Сz0=D, где D=Ax+By+Сz
Ax+By+Сz+D=0
Частный случай:
Если D=0, то Ax+By+Сz=0(проходит ч/з 0;0)
Если A=0, то By+Сz+D=0
Если B=0, то Ax +Сz+D=0
Если C=0, то Ax+By+D=0
Если A=B=0, то Сz+D=0
Если A=C=0, то By+D=0
Если A=D=0, то By+Сz=0
Если B=D=0, то Ay+Сz=0
Уравнение плоскости в отрезках
где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.
Взаимное расположение плоскостей.
Угол между плоскостями
N1,N2-нормальные векторы плоскости.
P:A1x+B1y+C1z+D1=0
Q:A2x+B2y+C2z+D2=0
P^Q{A1,B1,C1}
Q^N2{A2,B2,C2}
Угол между плоскостями
1)Пусть P^Q<=>N1^N2
A1A2+B1B2+C1C2=0 условие перпендикулярности P^Q.
2) Пусть P^Q<=> N1^N2
A1/A2=B1/B2=C1/C2- Условие параллельности 2х плоскостей.
A1/A2=B1/B2=C1/C2=D1/D2- Условие совпадения 2х плоскостей.
Парабола и ее свойства.
Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у - текущие координаты, а- нек. число, наз. параболой.
Если вершина нах. в О(0,0), то ур-е примет вид
y2=2px-симметрично отн. оси ОХ
х2=2pу-симметрично отн. оси ОУ
Точка F(p/2,0) наз. фокусом параболы, а прямая x=-p/2 - ее директриса.
Любой точке М(х,у), принадлежащей параболе, расстояние до фокуса = r=p/2
Св-ва:
1. парабола предст. собой ¥ точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.
5.1. Канонические и параметрические уравн прямой. Урав прямой, проходящ через две точки.
l m n
S{x2-x1,y2-y1,z2-z1}
Каноническое уравнение прямой в пространстве:
где — координаты некоторой фиксированной точки , лежащей на прямой, - координаты вектора, коллинеарного этой прямой.
Параметрические уравнения прямой могут быть записаны в виде:
где t — производный параметр, при этом
Сведение общего урав. прямой в пространсве к каноническим уравнениям.
P:A1x+B1y+C1z+D1=0
Q:A2x+B2y+C2z+D2=0
Общее ур-е прямой в пространстве.
Для того, чтобы перейти от общего к каноническому ур-ю прямой, надо задать начальную точку и направляющий вектор:
1. Найдем начальную точку:
Z=0
M0(x0,y0,0), т.к. Z=0
2. Найдем направляющий вектор S-?
P^N1{A1,B1,C1}
Q^N1{A2,B2,C2}
S=N1*N2
Взаимн распол-ние прямй и плоскоси. Угол между прямой и плоскостью
P:A1x+B1y+C1z+D1=0^N1{A1,B1}
Q:A2x+B2y+C2z+D2=0^N2{A2,B2}
а)
то
Взаимное расположение прямой и плоскости
Плоскость и прямая
1) пересекаются
2) прямая лежит в плоскости
3) параллельны
Если то случаи 1 - 3 имеют место, когда:
1)
2)
3)
Нормальное уравнение плоскости. Расстояние от точки до плоскости.
в векторной форме:
где - единичный вектор, — расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель
(знаки и противоположны).