Исследования функций и их графиков

Содержание

●Введение

●1.Определение функций

●1.1.Основные понятия о функциях

●1.2.Способы задания функций

●2.Иследования функций и их графиков

●2.1.Простейшие функции и их графики

●2.2.Кривые второго порядка

●3.Методы построения графиков функций

●3.1Построение графика функции вида у=f(-x)

●3.2.Деформация графика вдоль оси абсцисс

●3.3.Алгебраические операции над графиками функций

●Заключение

Введение

Изучение поведения функций и построение их графиков является важным разделом математики. Свободное владение техникой построения графиков часто помогает решить многие задачи и парой является единственным средством их решения. Кроме того, умение строить графики функций представляет большой самостоятельный интерес.

Цели реферата - систематизация методов построения графиков функций выходящих за рамки знаний предусмотренных средней школой. Так же в этом реферате хотелось бы отобразить методы и виды решения различных графиков функций. Основные положения по этим не традиционным графиком будут изложены в главе VI. При этом главное внимание уделено именно методам построения графиков, а не изучению их видов функций.

Графики и их функции

Определение функций

Основные понятия о функциях

Величины, участвующие в одном и том же явлении, могут быть взаимосвязаны, так что изменение одних из них влечёт за собой соответствующее изменение других. Например, увеличение (или уменьшение) радиуса круга ведёт к обязательному увеличению (или уменьшению) его площади. В таких случаях говорят, что между переменными величинами существует функциональная зависимость, причём одну величину называют функцией, или зависимой переменной (е часто обозначают буквой у), а другую - аргументом, или независимой переменной (её обозначают буквой х). Функциональную зависимость между х и у принято обозначать символом y=f(x). Если значению х соответствует больше, чем одно значение у. то такая функция называется многозначной. Исследование многозначных функций обычно сводится к исследованию однозначных.

Переменная величина у есть функция аргумента х, т.е. y=f(x), если каждому возможному значению х соответствует одно определённое значение у.

Графиком функции называется совокупность всех точек на плоскости, прямоугольные координаты которых х и у удовлетворяют уравнению y=f(x). Горизонтальную ось Ох называют осью абсцисс, вертикальную ось Оу - осью ординат. Графическое изображение функции имеет важное значение для её изучения. На графике функции часто непосредственно видны такие её особенности, которые можно было бы установить лишь путём длительных вычислений. Если между величинами х и у существует функциональная связь, то безразлично, какую из этих величин считать аргументом, а какую - функцией.

1.2. Способы задания функций

Функциональная зависимость, устанавливающая соответствие между значениями аргумента х и функции у, может быть различными способами:

1). Табличный способ. При этом способе ряд отдельных значений аргумента х1, х2, …, хk и соответствующий ему ряд отдельных значений функции у1, у2, …, уk задаются в виде таблицы. Несмотря на простоту, такой способ задания функции обладает существенным недостатком, так как не дает полного представления о характере функциональной зависимости между х и у и не является наглядным.

2). Словесный способ. Обычно этот способ задания иллюстрируют примером функции Дирихле у = D (х): если х - рациональное число, то значение функции D (х) равно 1, а если число х - иррациональное, то значение функции D (х) равно нулю. Таким образом, чтобы найти значение D (x0) при заданном значении х = х0, необходимо каким - либо способом установить, рационально или иррационально число х0.

3). Графический способ. Функциональная зависимость может быть задана с помощью графика функции у = f (x). Преимуществом такого способа задания является наглядность, позволяющая установить важные черты поведения функции. Недостаток графического способа заключается в невозможности применения математического аппарата для более детального исследования функции.

4). Аналитический способ. При аналитическом способе задания известна формула, по которой по заданному значению аргумента х можно найти соответствующее значение функции у. В математике чаще всего используется именно аналитический способ задания функций. Преимуществами такого способа задания являются компактность, возможность подсчета значения у при любом значении х и возможность применения математического аппарата для более детального исследования поведения функции. Однако аналитическому способу задания функции присуща недостаточная наглядность и возможная трудность вычисления значений функции.

Заключение

В первом пункте были изложены основные понятия и положения о функциях и их графиках. Так же этот пункт содержит такой параграф, как способы задания функций. Тема этого параграфа - неотъемлемая часть понятия функции. Основным достижением этого пункта можно считать систематизация старых знаний с добавлением части новых.

Второй пункт содержит в себе три параграфа: простейшие функции, тригонометрические функции и кривые второго порядка. В параграф простейшие функции изложены основные положения и исследования о таких функциях, как линейная, прямая пропорциональность, обратная пропорциональность, гипербола, квадратичная, степенная и многие другие функции. В параграфе тригонометрические функции систематизированы знания обо всех прямых тригонометрических функциях. Они приведены в таблице. В параграфе кривые второго порядка рассмотрены такие графики как окружность и эллипс.

Третий пункт содержит огромный полезный материал для практического применения. В ней были рассмотрены разнообразнейшие методы и способы построения сложных графиков функций. Эти приемы построения могут пригодиться на уроках алгебры для более быстрого и рационального построения графиков функций.

Содержание

●Введение

●1.Определение функций

●1.1.Основные понятия о функциях

●1.2.Способы задания функций

●2.Иследования функций и их графиков

●2.1.Простейшие функции и их графики

●2.2.Кривые второго порядка

●3.Методы построения графиков функций

●3.1Построение графика функции вида у=f(-x)

●3.2.Деформация графика вдоль оси абсцисс

●3.3.Алгебраические операции над графиками функций

●Заключение

Введение

Изучение поведения функций и построение их графиков является важным разделом математики. Свободное владение техникой построения графиков часто помогает решить многие задачи и парой является единственным средством их решения. Кроме того, умение строить графики функций представляет большой самостоятельный интерес.

Цели реферата - систематизация методов построения графиков функций выходящих за рамки знаний предусмотренных средней школой. Так же в этом реферате хотелось бы отобразить методы и виды решения различных графиков функций. Основные положения по этим не традиционным графиком будут изложены в главе VI. При этом главное внимание уделено именно методам построения графиков, а не изучению их видов функций.

Графики и их функции

Определение функций

Основные понятия о функциях

Величины, участвующие в одном и том же явлении, могут быть взаимосвязаны, так что изменение одних из них влечёт за собой соответствующее изменение других. Например, увеличение (или уменьшение) радиуса круга ведёт к обязательному увеличению (или уменьшению) его площади. В таких случаях говорят, что между переменными величинами существует функциональная зависимость, причём одну величину называют функцией, или зависимой переменной (е часто обозначают буквой у), а другую - аргументом, или независимой переменной (её обозначают буквой х). Функциональную зависимость между х и у принято обозначать символом y=f(x). Если значению х соответствует больше, чем одно значение у. то такая функция называется многозначной. Исследование многозначных функций обычно сводится к исследованию однозначных.

Переменная величина у есть функция аргумента х, т.е. y=f(x), если каждому возможному значению х соответствует одно определённое значение у.

Графиком функции называется совокупность всех точек на плоскости, прямоугольные координаты которых х и у удовлетворяют уравнению y=f(x). Горизонтальную ось Ох называют осью абсцисс, вертикальную ось Оу - осью ординат. Графическое изображение функции имеет важное значение для её изучения. На графике функции часто непосредственно видны такие её особенности, которые можно было бы установить лишь путём длительных вычислений. Если между величинами х и у существует функциональная связь, то безразлично, какую из этих величин считать аргументом, а какую - функцией.

1.2. Способы задания функций

Функциональная зависимость, устанавливающая соответствие между значениями аргумента х и функции у, может быть различными способами:

1). Табличный способ. При этом способе ряд отдельных значений аргумента х1, х2, …, хk и соответствующий ему ряд отдельных значений функции у1, у2, …, уk задаются в виде таблицы. Несмотря на простоту, такой способ задания функции обладает существенным недостатком, так как не дает полного представления о характере функциональной зависимости между х и у и не является наглядным.

2). Словесный способ. Обычно этот способ задания иллюстрируют примером функции Дирихле у = D (х): если х - рациональное число, то значение функции D (х) равно 1, а если число х - иррациональное, то значение функции D (х) равно нулю. Таким образом, чтобы найти значение D (x0) при заданном значении х = х0, необходимо каким - либо способом установить, рационально или иррационально число х0.

3). Графический способ. Функциональная зависимость может быть задана с помощью графика функции у = f (x). Преимуществом такого способа задания является наглядность, позволяющая установить важные черты поведения функции. Недостаток графического способа заключается в невозможности применения математического аппарата для более детального исследования функции.

4). Аналитический способ. При аналитическом способе задания известна формула, по которой по заданному значению аргумента х можно найти соответствующее значение функции у. В математике чаще всего используется именно аналитический способ задания функций. Преимуществами такого способа задания являются компактность, возможность подсчета значения у при любом значении х и возможность применения математического аппарата для более детального исследования поведения функции. Однако аналитическому способу задания функции присуща недостаточная наглядность и возможная трудность вычисления значений функции.

Исследования функций и их графиков

Наши рекомендации