Признаки постоянства, возрастания и убывания функций на промежутке
Необходимое и достаточное условие постоянства функции y = f ( x ) выражается равенством y ’ = 0.
Если производная функции на участке существует и равна нулю и функция определена на данном участке, то функция на данном участке постоянна.
Определение возрастающей функции.
Функция y=f(x) называется возрастающей в промежутке (a,b), если для любых двух значений x1 и x2 из неравенства x1<x2 следует неравенство f(x1)<f(x2).
Функция y=f(x) возрастает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Определение убывающей функции.
Функция y=f(x) называется убывающей в промежутке (a,b), если для любых двух значений x1 и x2 из неравенства x1<x2 следует неравенство f(x1)>f(x2).
Функция y=f(x) убывает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.
Нахождение максимумов и минимумов функции с помощью производных
Определение: Говорят, что функция имеет в точке максимум , ( или минимум) , если существует некоторая окрестность в промежутке, где функция определена, что для всех точек этой окрестности выполняется неравенство ( ).
Пусть функция определена на некотором промежутке и во внутренней точке с этого промежутка принимает наибольшее (наименьшее) значение. Если существует двусторонняя конечная производная , то необходимо .
Определение: Если выполняется равенство , то точку будем называть стационарной точкой.
Определение: Стационарные точки и точки, в которых не существует двусторонней конечной производной, будем называть точками, подозрительными на экстремум.
Предположим, что в некоторой окрестности стационарной точки существует конечная производная и как слева от ,так и справа от ( в отдельности) сохраняет определенный знак. Тогда возможны следующие три случая:
1) при и при (производная при переходе через точку меняет свой знак с плюса на минус). Т.е. при функция возрастает, а при — убывает. Значит, значение будет наибольшим в промежутке . Другими словами, в точке функция имеет максимум.
Пояснение: Сверху от числовой оси указывается знак производной на соответствующем интервале, снизу от числовой оси обозначается поведение функции на соответствующем интервале (убывание или возрастание).
2) при и при (производная при переходе через точку меняет свой знак с минуса на плюс). Т.е. при функция убывает, а при — возрастает. Значит, значение будет наименьшим в промежутке . Другими словами, в точке функция имеет минимум.
3) при и при ( при и при )(производная при переходе через точку не меняет свой знак). Т.е. функция в промежутке убывает (возрастает). Другими словами, в точке функция не имеет экстремума.