Векторы, простейшие действия над ними
Основные понятия
Понятие вектора известно из школьного курса. Наиболее часто мы будем пользоваться координатной формой записи векторов: . Напомним, что всегда вектор предполагается свободным, т.е. его можно без изменения длины и направления переносить в любую точку пространства. В случае координатного задания вектора его длина вычисляется по формуле:
. (4.1)
Направление же вектора определяется углами a, b, g, образованными вектором с положительными полуосями координат Ох, Оу, Oz, которые можно найти из формул для направляющих косинусов этих углов:
(4.2)
Операции над векторами
Произведение вектора на скалярный множитель l определяется по формуле l = (lа1, lа2, lа3).
Для двух векторов , их сумма и разность определяются по правилам:
Геометрически сумма и разность векторов строится как на рисунке:
Если точка О - начало координат, а М - точка с координатами (x, y, z), то вектор называется радиусом-вектором точки М.
Вектор с началом в точке А(x1, y1, z1) и концом в точке В(x2, y2, z2) в координатном виде записывается так: = .
Примеры.
а) В треугольнике АВС сторона АВ точками М и N разделена на три равные части: Найти вектор , если . Если построить треугольник и указанные вектора, то из геометрических правил сложения и вычитания легко получаются равенства т.е. . Так как , то Та-ким образом,
б) Найти длину вектора = (10, 15, -30) и его направляющие косинусы.
По формулам (4.1) и (4.2) определяем
3) Найти вектор , если А(2, 1, 0) и В(3, 0, 5).
Из формулы для координат вектора имеем = (3-2, 0-1, 5-0) =
= (1, -1, 5).
4.3. Задачи для самостоятельного решения
а) Дан треугольник АВС. На стороне ВС расположена точка М так, что Найти вектор если = ,
б) Найти координаты вектора где А(0, 0, 1), В(3, 2, 1), С(4, 6, 5), D(1, 6, 3).
в) Даны радиусы - векторы вершин треугольника АВС:
Показать, что треугольник АBC - равносторонний.
г) Вычислить длину вектора (1, 2, 1) и найти его направляющие косинусы.
д) Даны точки А(1, 2, 3) и В(3, -4, 6). Найти длину и направление вектора .
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ
Определение и свойства
Пусть даны два вектора и .Тогда их скалярное произведение определяется из равенства , где j - угол между этими векторами.
Если векторы заданы в координатной форме , , то их скалярное произведение вычисляется по формуле:
.
Скалярное произведение векторов обладает следующими свойствами:
а) ;
б) если ^ (ортогональные вектора), то = 0;
в) ;
г) ;
д) , где λ- любое число.
Примеры.
а) Найти скалярное произведение векторов = (2, 1, 1) и = (2, -5, 1).
Из определения имеем = .
б) Даны вектор = (m, 3, 4) и вектор = (4, m, -7). При каких значениях m вектор ортогонален вектору ?
Из условий ортогональности имеем: = 4m + 3m -28 = 0,
7m = 28, m = 4.
в) Найти , если и ^ .
Из свойств скалярного произведения имеем: ,
т.к. ^ , тогда
г) Определить угол между векторами = (1, 2, 3) и = (0, 4, -2).
Так как Из координатного представления векторов находим 0+8-6=2,
5.2. Задачи для самостоятельного решения
а) Даны векторы = (3, -2, -4), = (6, -2, 3). Найти ( )( ).
б) Вычислить работу силы = (1, 2, 1) при перемещении материальной точки из положения М1(-1, 2, 0) в положение М2(2, 1, 3) . Напомним, что работа вектора силы равна скалярному произведению вектора на вектор перемещения .
в) Найти координаты вектора , если он коллинеарен вектору
= (2, 1, 0) и его скалярное произведение на вектор равно 3, т.е.
ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ