Угол между плоскостями. Условие параллельности и перпендикулярности плоскостей.
1) Угол между плоскостями. Один из смежных углов между плоскостями равен углу между их смежными векторами. ПУСТЬ P1:A1x+B1y+C1z+D1=0; и ; P2:A2x+B2y+C2z+d2=0; n1(A1;B1;C1) и n2(A2;b2;c2); => . угол между плоскостями 2) Условия перпендикулярности 2х плоскостей. Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или . Таким образом, . 3) Условия параллельности 2х плоскостей.Две плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит |
17.Уравнение плоскости, заданной тремя точками
Любые ли три точки пространства задают плоскость? Нет. Во-первых, точки должны быть различными. А во-вторых, они не должны лежать на одной прямой (сразу все три).
Уравнение плоскости, проходящей через три различные точки , которые не лежат на одной прямой, можно составить по формуле:
На самом деле это разновидность предыдущего способа, смотрим на картинку:
Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:
То есть, наша формула фактически совпадает с формулой предыдущего параграфа. Многие уже заметили явную аналогию с материалами статьи Уравнение прямой на плоскости. Закономерности будут сохраняться и дальше!
Чтобы не умереть от скуки, предлагаю раскрутить примеры-шарады:
Пример 3
Составить уравнение плоскости по точкам .Решение: составим уравнение плоскости по трём точкам. Используем формулу:
Вот теперь и аналитически видно, что всё дело свелось к координатам двух векторов. Раскрываем определитель по первому столбцу, находим уравнение плоскости:
Больше ничего упростить нельзя, записываем:
Ответ:
18.Уравнение плоскости, заданной точкой и двумя параллельными векторами
Рассмотрим точку и два неколлинеарных вектора .Уравнение плоскости, которая проходит через точку параллельно векторам ,выражается формулой:
! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.
Принципиально ситуация выглядит так:
Обратите внимание, что точка и два коллинеарных вектора не определят плоскость (векторы будут свободно «вертеться» вокруг точки).
Пример 1
Составить уравнение плоскости по точке и векторам .
Решение: Составим уравнение плоскости по точке и двум неколлинеарным векторам:
Определитель удобнее всего раскрыть по первому столбцу:
Раскрываем определители второго порядка:
На первом месте у нас находится знак «минус». Хорошим тоном считается убрать наглеца, в этих целях меняем знак у каждого слагаемого. Проводим дальнейшие упрощения и получаем уравнение плоскости:
Сократить здесь ничего нельзя, поэтому:
Ответ:
19. Уравнение прямой (в пространстве), заданной двумя точками. Каноническое уравнение прямой в пространстве.