Обобщенный метод наименьших квадратов.
Введение в эконометрику.
Эконометрика – это математическая наука, изучающая экономическую жизнь с помощью математических методов и, преимущественно, методов математической статистики.
Цели эконометрики: эконометрический анализ данных наблюдений и вывод обоснованных практических решений.
Основным объектом изучения эконометрики является эконометрическая модель.
Основные этапы эконометрического анализа:
1. Постановочный этап – этот этап включает в себя определение конечных целей анализа, набора факторов и переменных, описание взаимосвязей между ними, а также роли этих факторов и переменных.
На этом этапе первым делом следует выяснить, какие факторы являются входными, т.е. такими, которые полностью или частично регулируемы, легко поддаются прогнозу и регистрации. Входные факторы в эконометрике называются объясняющими.
Затем определяются выходные факторы, которые трудно поддаются прогнозу, и значения которых формируются в процессе функционирования рассматриваемой системы. Выходные факторы также называются объясняемыми.
2. Априорный (предмодельный) этап– этот этап состоит в предварительном анализе содержательной сущности моделируемых явлений, в формировании и математической формализации имеющейся априорной (предварительной) информации о данном явлении в виде ряда гипотез и математических соотношений.
3. Информационно-статистический(практический) этап – на этом этапе происходит сбор необходимой статистической информации: регистрация конкретных значений определенных ранее переменных и факторов.
4. Спецификация модели– на данном этапе определяется структура модели, т.е. её символическая математическая запись, в которой, наряду с переменными и факторами, значения которых известны, обычно присутствуют величины, содержательный смысл которых определен, а числовые значения – нет.
Такие величины называются параметрами модели и их значения нужно найти.
5. Идентификация модели (id) – этот этап предназначен для проведения статистического анализа модели.
При выполнении данного этапа вначале нужно ответить на вопрос: возможно ли, в принципе, однозначно восстановить значение неизвестных параметров модели по имеющимся статистическим данным?
Если ответ положителен, то необходимо решить проблему идентификации модели, т.е. нужно предложить и реализовать математически корректную процедуру оценивания неизвестных параметров модели.
Если ответ отрицателен, то необходимо вернуться к этапу №4 и внести изменения в структуру. Но, возможно, придется вообще вернуться к этапу №2 и выбрать другую модель.
6. Верификация модели (статистический анализ точности и адекватности модели) – на данном этапе используются различные процедуры сопоставления модельных выводов (выводов по модели), оценок и следствий с реально наблюдаемой действительностью.
Если результат сопоставления неудовлетворительный, то следует вернуться на этапы №4 и №5.
Эконометрическая система «Черный ящик».
Входные факторы Выходные факторы
«Черный ящик», в котором происходит весь эконометрический анализ. |
x2 y2
x3 y3
xn ym
Типы эконометрических моделей:
1. Модель с одним уравнением – эта модель получается при m=1, т.е. при одном зависимом факторе, следовательно,
( ), где = ( ,
а - параметры модели,
В этой модели в зависимости от функции f, различают также линейные и нелинейные модели.
Например: – линейная модель
– нелинейная модель
2. Модель с несколькими одновременными уравнениями - эта модель получается при m , т.е. с множеством зависимых факторов, следовательно,
( ), где = ( )?
( ), а - параметры модели,
. . . при
( ).
Важной отличительной особенностью этой системы уравнений является возможность включения объясняемых переменных в число объясняющих, т.е.
( ), где ), где = ( ,
а - параметры модели,
3. Временные ряды - это схема «черный ящик» с n=1, т.е. входной фактор всего один и это – время, следовательно,
( ), где t - время,
а - параметры модели,
Постановки задач в эконометрике.
Предположим, что у нас есть A I – объекты исследования, при i = 1 ,2…N
X1, X2 …XN – переменные, которые описывают эти объекты. Эти переменные делятся на два типа: независимые (объясняющие, входные) и зависимые (объясняемые, выходные). Также они бывают количественными и качественными (дискретными).
Изначально, для постановки задачи, среди всех факторов и переменных следует выделить Y – зависимую переменную.
Цель эконометрического анализа – прогнозирование значения Y. Эта задача решается по-разному, в зависимости от типа переменных:
Iй вариант: все переменные X ( 1, 2… n) и Y ( 1, 2… n) количественные => для решения применяются методы регрессионного анализа.
IIй вариант: все переменные X ( 1, 2… n)– количественные, а все Y( 1, 2… n) – качественные (дискретные) => для решения применяются методы классификации, распознавания образов и дискриминантный анализ.
IIIй вариант: все переменные X ( 1, 2… n)– качественные (дискретные), а все Y( 1, 2… n) – количественные => для решения применяются методы дисперсионного анализа.
IVй вариант: одна часть переменных X ( 1, 2… L) – количественные, а другая часть ( L, 2… n) – качественные (дискретные), все переменные Y( 1, 2… n) – количественные => для решения применяются ковариационный анализ или метод «деревья регрессии».
Регрессионный анализ.
– решающая функция или функция регрессии.
Замечание: 1) = E(Y/X), где Y и X - дискретные случайные величины.
Y X | b1 | b2 | …. | bn |
a1 | P1 1 | P1 2 | …. | P1 n |
a2 | P2 1 | P2 2 | …. | P2 n |
…. | …. | …. | …. | …. |
an | Pn 1 | Pn 2 | …. | Pn n |
Если Y и X дискретные случайные величины, то
функция регрессии – это условное мат.ожидание.
2)Если Y и X - непрерывные случайные величины
- плотность совместного распределения X и Y.
Условное распределение, следовательно и условная плотность.
,
- частное распределение
Мат. ожидание:
( i, i)...-значения наблюдений (Y,X)
i=1,2,..,n
Естественно, при каждом
наблюдении возможна ошибка ( ).
Предполагают, что - вектор ошибок - удовлетворяет следующим условиям:
1. - независимые случайные величины
2. Е =0, D = - постоянные
3. и тоже независимые, т.е. ошибка от Х не зависит
Этапы (шаги) регрессионного анализа:
1. выбор вида модели
2. оценка параметров выбранной модели. Оценка функций регрессии ( *).
3.проверка статистических гипотез по регрессионной модели.
4. проверка модели на адекватность и точность.
5.эксперементальная проверка модели и прогнозирование на основе этой модели.
Виды регрессионных моделей:
1. простейшая линейная модель
, – параметры модели
2. множественная линейная модель
3. полиномиальная модель
4.гипперболическая модель
5. показательная модель
6. логистическая модель (S-образная кривая)
7. стапенная модель
8. логарифмическая модель
Замечание: Метод аналитической группировки.
1. Способ выбора вида модели. Графический.
X | … | ||||
Y | … |
, - количество интервалов
, - длина интервала
И т.д.
:
Т.е. - одна средняя точка
Далее, определив еще несколько средних точек, строим по ним график функции и по нему определяем вид модели.
2. Оценивание параметров выбранной модели (на примере линейной модели, т.к. остальные виды моделей с помощью небольших преобразований сводятся к линейной).
Примеры моделей, которые сводятся к линейным:
1. - гиперболическая модель
=>
2. - показательная модель
, ,
… | |||||
… | |||||
… | … | … |
=> =>
3. – логистическая модель
, , => =>
4. – степенная модель
, , =>
5. – логарифмическая модель
=>
Наша регрессионная модель имеет классическую форму, т.е. удовлетворяет следующим двум условиям:
1. Переменная – не случайная величина, т.е. она задается (управляема),
- случайная величина.
2. Случайные ошибки независимые, одинаково распределенные случайные, имеющие нормальное распределение с нулевым математическим ожиданием ( ) и
Теорема Гауса-Маркова.
(без доказательства)
Пусть выполняются условия №№ 1 и2, тогда оценки, полученные методом наименьших квадратов обладают следующими свойствами:
1. Они не смещенные, т.е.
и
2. Дисперсия этих оценок минимальна среди всех линейных моделей, эти оценки называются эффективными.
Введение в эконометрику.
Эконометрика – это математическая наука, изучающая экономическую жизнь с помощью математических методов и, преимущественно, методов математической статистики.
Цели эконометрики: эконометрический анализ данных наблюдений и вывод обоснованных практических решений.
Основным объектом изучения эконометрики является эконометрическая модель.
Основные этапы эконометрического анализа:
1. Постановочный этап – этот этап включает в себя определение конечных целей анализа, набора факторов и переменных, описание взаимосвязей между ними, а также роли этих факторов и переменных.
На этом этапе первым делом следует выяснить, какие факторы являются входными, т.е. такими, которые полностью или частично регулируемы, легко поддаются прогнозу и регистрации. Входные факторы в эконометрике называются объясняющими.
Затем определяются выходные факторы, которые трудно поддаются прогнозу, и значения которых формируются в процессе функционирования рассматриваемой системы. Выходные факторы также называются объясняемыми.
2. Априорный (предмодельный) этап– этот этап состоит в предварительном анализе содержательной сущности моделируемых явлений, в формировании и математической формализации имеющейся априорной (предварительной) информации о данном явлении в виде ряда гипотез и математических соотношений.
3. Информационно-статистический(практический) этап – на этом этапе происходит сбор необходимой статистической информации: регистрация конкретных значений определенных ранее переменных и факторов.
4. Спецификация модели– на данном этапе определяется структура модели, т.е. её символическая математическая запись, в которой, наряду с переменными и факторами, значения которых известны, обычно присутствуют величины, содержательный смысл которых определен, а числовые значения – нет.
Такие величины называются параметрами модели и их значения нужно найти.
5. Идентификация модели (id) – этот этап предназначен для проведения статистического анализа модели.
При выполнении данного этапа вначале нужно ответить на вопрос: возможно ли, в принципе, однозначно восстановить значение неизвестных параметров модели по имеющимся статистическим данным?
Если ответ положителен, то необходимо решить проблему идентификации модели, т.е. нужно предложить и реализовать математически корректную процедуру оценивания неизвестных параметров модели.
Если ответ отрицателен, то необходимо вернуться к этапу №4 и внести изменения в структуру. Но, возможно, придется вообще вернуться к этапу №2 и выбрать другую модель.
6. Верификация модели (статистический анализ точности и адекватности модели) – на данном этапе используются различные процедуры сопоставления модельных выводов (выводов по модели), оценок и следствий с реально наблюдаемой действительностью.
Если результат сопоставления неудовлетворительный, то следует вернуться на этапы №4 и №5.
Эконометрическая система «Черный ящик».
Входные факторы Выходные факторы
«Черный ящик», в котором происходит весь эконометрический анализ. |
x2 y2
x3 y3
xn ym
Типы эконометрических моделей:
1. Модель с одним уравнением – эта модель получается при m=1, т.е. при одном зависимом факторе, следовательно,
( ), где = ( ,
а - параметры модели,
В этой модели в зависимости от функции f, различают также линейные и нелинейные модели.
Например: – линейная модель
– нелинейная модель
2. Модель с несколькими одновременными уравнениями - эта модель получается при m , т.е. с множеством зависимых факторов, следовательно,
( ), где = ( )?
( ), а - параметры модели,
. . . при
( ).
Важной отличительной особенностью этой системы уравнений является возможность включения объясняемых переменных в число объясняющих, т.е.
( ), где ), где = ( ,
а - параметры модели,
3. Временные ряды - это схема «черный ящик» с n=1, т.е. входной фактор всего один и это – время, следовательно,
( ), где t - время,
а - параметры модели,
Постановки задач в эконометрике.
Предположим, что у нас есть A I – объекты исследования, при i = 1 ,2…N
X1, X2 …XN – переменные, которые описывают эти объекты. Эти переменные делятся на два типа: независимые (объясняющие, входные) и зависимые (объясняемые, выходные). Также они бывают количественными и качественными (дискретными).
Изначально, для постановки задачи, среди всех факторов и переменных следует выделить Y – зависимую переменную.
Цель эконометрического анализа – прогнозирование значения Y. Эта задача решается по-разному, в зависимости от типа переменных:
Iй вариант: все переменные X ( 1, 2… n) и Y ( 1, 2… n) количественные => для решения применяются методы регрессионного анализа.
IIй вариант: все переменные X ( 1, 2… n)– количественные, а все Y( 1, 2… n) – качественные (дискретные) => для решения применяются методы классификации, распознавания образов и дискриминантный анализ.
IIIй вариант: все переменные X ( 1, 2… n)– качественные (дискретные), а все Y( 1, 2… n) – количественные => для решения применяются методы дисперсионного анализа.
IVй вариант: одна часть переменных X ( 1, 2… L) – количественные, а другая часть ( L, 2… n) – качественные (дискретные), все переменные Y( 1, 2… n) – количественные => для решения применяются ковариационный анализ или метод «деревья регрессии».
Регрессионный анализ.
– решающая функция или функция регрессии.
Замечание: 1) = E(Y/X), где Y и X - дискретные случайные величины.
Y X | b1 | b2 | …. | bn |
a1 | P1 1 | P1 2 | …. | P1 n |
a2 | P2 1 | P2 2 | …. | P2 n |
…. | …. | …. | …. | …. |
an | Pn 1 | Pn 2 | …. | Pn n |
Если Y и X дискретные случайные величины, то
функция регрессии – это условное мат.ожидание.
2)Если Y и X - непрерывные случайные величины
- плотность совместного распределения X и Y.
Условное распределение, следовательно и условная плотность.
,
- частное распределение
Мат. ожидание:
( i, i)...-значения наблюдений (Y,X)
i=1,2,..,n
Естественно, при каждом
наблюдении возможна ошибка ( ).
Предполагают, что - вектор ошибок - удовлетворяет следующим условиям:
1. - независимые случайные величины
2. Е =0, D = - постоянные
3. и тоже независимые, т.е. ошибка от Х не зависит
Этапы (шаги) регрессионного анализа:
1. выбор вида модели
2. оценка параметров выбранной модели. Оценка функций регрессии ( *).
3.проверка статистических гипотез по регрессионной модели.
4. проверка модели на адекватность и точность.
5.эксперементальная проверка модели и прогнозирование на основе этой модели.
Виды регрессионных моделей:
1. простейшая линейная модель
, – параметры модели
2. множественная линейная модель
3. полиномиальная модель
4.гипперболическая модель
5. показательная модель
6. логистическая модель (S-образная кривая)
7. стапенная модель
8. логарифмическая модель
Замечание: Метод аналитической группировки.
1. Способ выбора вида модели. Графический.
X | … | ||||
Y | … |
, - количество интервалов
, - длина интервала
И т.д.
:
Т.е. - одна средняя точка
Далее, определив еще несколько средних точек, строим по ним график функции и по нему определяем вид модели.
2. Оценивание параметров выбранной модели (на примере линейной модели, т.к. остальные виды моделей с помощью небольших преобразований сводятся к линейной).
Примеры моделей, которые сводятся к линейным:
1. - гиперболическая модель
=>
2. - показательная модель
, ,
… | |||||
… | |||||
… | … | … |
=> =>
3. – логистическая модель
, , => =>
4. – степенная модель
, , =>
5. – логарифмическая модель
=>
Наша регрессионная модель имеет классическую форму, т.е. удовлетворяет следующим двум условиям:
1. Переменная – не случайная величина, т.е. она задается (управляема),
- случайная величина.
2. Случайные ошибки независимые, одинаково распределенные случайные, имеющие нормальное распределение с нулевым математическим ожиданием ( ) и
Теорема Гауса-Маркова.
(без доказательства)
Пусть выполняются условия №№ 1 и2, тогда оценки, полученные методом наименьших квадратов обладают следующими свойствами:
1. Они не смещенные, т.е.
и
2. Дисперсия этих оценок минимальна среди всех линейных моделей, эти оценки называются эффективными.
Обобщенный метод наименьших квадратов.
Применение метода наименьших квадратов в некоторых случаях может привести к тому, что полученные оценки параметров не будут оптимальны в смысле теоремы Гауса-Маркова. Для анализа таких ситуаций обычно используют обобщенный метод наименьших квадратов для модели множественной регрессии.
, где а - вектор параметров
, где
) – ошибки наблюдений
, где - неизвестная const, - положительно определенная матрица.
В общем виде определить трудно вид этой матрицы , поэтому на практике делают некоторые предположения о её структуре. Если нарушается только условие:
1) (или одно из этих равенств не выполняется), то
, где неизвестны, но могут быть оценены статистическими методами.
2) (условие некоррелируемости случайных ошибок), то матрица не является диагональной матрицей, т.е. вне главной диагонали есть ненулевые элементы, а на главной диагонали - только единицы.
Оценивание параметров модели с помощью методов наименьших квадратов происходит следующим образом: . Эти оценки являются оптимальными оценками в смысле теории Гауса-Маркова.
Для этой модели (множественной рег