Законы цепей в символической форме
1. Первый закон Кирхгофа
Алгебраическая сумма мгновенных значений токов ветвей, сходящихся в одном узле, равна нулю. .
Подставим вместо каждого мгновенного значения тока его представление в виде комплекса амплитудного значения, тогда .
Так как в любой момент времени нулю равна сумма проекций вращающихся векторов, следовательно, нулю должна равняться сумма самих вращающихся векторов, т.е. получим . Так как , то сократим на нее и получим .
Алгебраическая сумма комплексов амплитудных значений токов ветвей, сходящихся в одном узле, равна нулю.
Поделив на , получим первый закон Кирхгофа для комплексов действующих значений.
2. Второй закон Кирхгофа
После аналогичных преобразований получим:
или .
Алгебраическая сумма комплексов амплитудных (действующих) значений напряжений на всех элементах контура, кроме ЭДС равна алгебраической сумме комплексов амплитудных (действующих) значений ЭДС этого же контура.
Однако для самих амплитудных и действующих значений законы Кирхгофа не выполняются.
3.6 Фазовые соотношения между напряжением и током на элементах R,L,C
Комплексы амплитуд напряжения и тока на элементах R,L,C связаны между собой.
Для R:
, , где Um=RIm,, ju=ji
Перейдем к проекциям вращающихся векторов:
, => Так как , . Тогда
:
Для L:
,
.
,
ju=ji + 900.
: - комплексное сопротивление индуктивности.
Для C:
,
ju=ji - 900.
: - комплексное сопротивление емкости.
Таким образом, для любого элемента в цепи синусоидального тока - некоторое комплексное число по размерности оно соответствует сопротивлению, и поэтому его называют комплексом полного сопротивления и обозначают . Тогда:
,
,
.
представляет закон Ома в символической форме.
Комплекс полного сопротивления участка пассивной цепи синусоидального тока рассчитывают так же, как в цепи постоянного тока, если вместо элементов участка использовать комплексные сопротивления этих элементов.
,
где:
- коэффициент пропорциональности между амплитудными или действующими значениями напряжения и тока на данном элементе;
показывает на сколько фаза напряжения больше фазы тока на данном элементе.
Иногда строят треугольник сопротивлений. Фактически это и есть изображение комплекса полного сопротивления на комплексной плоскости.
Величина , как любое комплексное число, может быть представлена в показательной, тригонометрической или алгебраической форме:
,
где - вещественная часть комплекса полного сопротивления, ее называют активной составляющей комплекса полного сопротивления;
- мнимая часть комплекса полного сопротивления, ее называют реактивной составляющей комплекса полного сопротивления;
- модуль комплекса полного сопротивления;
- фаза комплекса полного сопротивления, изменяется в пределах .
Величину обратную комплексу полного сопротивления называют комплексом полной проводимости (КПП):
, где
.
Для получения в «буквах» активной и реактивной составляющих комплекса полной проводимости по заданным в «буквах» активной и реактивной составляющим комплекса полного сопротивления: