Регрессионный анализ. Ошибки оценок коэффициентов регрессии. Проверка гипотез о значимости коэффициентов регрессии и уравнения регрессии в целом.

Определение регрессии. Регрессия — функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

Определение коэффициента регрессии. Коэффициент регрессии — абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.

Формула коэффициента регрессии. Rу/х = rху x (σу / σx)
где Rу/х — коэффициент регрессии;
rху — коэффициент корреляции между признаками х и у;
у и σx) — среднеквадратические отклонения признаков x и у.

В нашем примере [rху = - 0,96 коэффициент корреляции между изменениями среднемесячной температуры в осенне-зимний период (х) и средним числом инфекционно-простудных заболеваний (у)];
σх = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;
σу = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).
Таким образом, Rу/х — коэффициент регрессии.
Rу/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

Уравнение регрессии. у = Му + Ry/x (х - Мx)
где у — средняя величина признака, которую следует определять при изменении средней величины другого признака (х);
х — известная средняя величина другого признака;
Ry/x — коэффициент регрессии;
Мх, Му — известные средние величины признаков x и у.

Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, Rу/х = 1,8 заболеваний, Мх = -7°, Му = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.
Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

Назначение уравнения регрессии. Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график — линия регрессии, по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.

Сигма регрессии (формула).

Регрессионный анализ. Ошибки оценок коэффициентов регрессии. Проверка гипотез о значимости коэффициентов регрессии и уравнения регрессии в целом. - student2.ru


где σRу/х — сигма (среднеквадратическое отклонение) регрессии;
σу— среднеквадратическое отклонение признака у;
rху — коэффициент корреляции между признаками х и у.

Так, если σу - среднеквадратическое отклонение числа простудных заболеваний = 8,65; rху — коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен — 0,96, то

Регрессионный анализ. Ошибки оценок коэффициентов регрессии. Проверка гипотез о значимости коэффициентов регрессии и уравнения регрессии в целом. - student2.ru

Назначение сигмы регрессии. Дает характеристику меры разнообразия результативного признака (у).

Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.
При х2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

Наши рекомендации