Понятие корреляционной зависимости между выборочными случайными величинами.

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, могут ли учащиеся с высоким уровнем тревожности демонстрировать стабильные академичес­кие достижения, или связана ли продолжительность работы учителя в школе с размером его заработной платы, или с чем больше связан уровень умственного развития учащихся — с их успеваемостью по математике или по литературе и т.п.?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь — это согласованное изме­нение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью дру­гого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем боль­ше рост, тем больше вес человека. Однако из этого правила име­ются исключения, когда относительно низкие люди имеют из­быточный вес, и, наоборот, астеники, при высоком росте име­ют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи — это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статисти­ки. «Оба термина, — пишет Е.В. Сидоренко, — корреляционная связь и корреляционная зависимость — часто используются как синони­мы. Зависимость подразумевает влияние, связь — любые согласован­ные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака (Е.В. Сидоренко, 2000).

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (ли­нейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимо­сти полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

Понятие корреляционной зависимости между выборочными случайными величинами. - student2.ru По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решае­мых задач в контрольной сессии. Криволинейной может быть, напри­мер, связь между уровнем мотивации и эффективностью выполнения задачи (см. рис. 1). При повышении мотивации эффективность вы­полнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутст­вует уже снижение эффективности.

Рис.1. Связь между эффективностью решения задачи

и силой мотивационной тен­денции (по J. W. Atkinson, 1974, р 200)

По направлению корреляционная связь может быть положитель­ной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значе­ниям одного признака - низкие значения другого. При отрицательной корреляции соотношения обратные. При положительной корреляции коэффициент корреляции имеет положительный знак, например r=+0,207, при отрицательной корреля­ции - отрицательный знак, например r=—0,207.

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Максимальное воз­можное абсолютное значение коэффициента корреляции r=1,00; минимальное r=0,00.

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

сильная, или тесная при коэффициенте корреляции r>0,70;

средняя при 0,50<r<0,69;

умеренная при 0,30<r<0,49;

слабая при 0,20<r<0,29;

очень слабая при r<0,19.

Переменные Х и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции (см. табл. 3):

Таблица 3. Использование коэффициента корреляции в зависимости от типа переменных

Тип шкалы Мера связи
Переменная X Переменная У  
Интервальная или отношений Интервальная или отношений Коэффициент Пирсона
Ранговая, интервальная или отношений Ранговая, интервальная или отношений Коэффициент Спирмена
Ранговая Ранговая Коэффициент Кендалла
Дихотомическая Дихотомическая Коэффициент «j»
Дихотомическая Ранговая Рангово-бисериальный
Дихотомическая Интервальная или отношений Бисериальный

Наши рекомендации