Бесконечно малые и бесконечно большие. Теоремы о бесконечно малых.
Определение: Ф-цияf(x) назыв бесконечно малой, если её предел при х→а, равен 0
=0
или >0, >0. что →
Свойства:
1) =Аó(f(x) - A) – б.м. при х→а. Следствие =А → f(x)=A+α, α -б.м.
2) α, β -б.м. → α + β= б.м.
3) α -б.м. , у- ограниченная, α *у – б.м. Следствие: -
α*β- б.м., где α и β -б.м.
- С* α -б.м, где α -б.м. С - const
4) α/y –б.м. где α-б.м. , lim y≠0
Определение: Ф-цияf(x) назыв бесконечно большой, если её предел при х→а, равен ∞
=∞
Теорема: (связь между б.м и б.б.)
у=f(x) – б.м. при х→а ó 1/f(x) – б.б. при х→а и наоборот.
Теоремы о пределах. Односторонние пределы.
Теорема 1: Пусть lim{x→a}f(x)=А и lim{x→a}g(x)=В, тогда 1)lim{x→a}(f(x)+g(x)) = А+В; 2)lim{x→a}(f(x)*g(x)) = А*В; 3)lim{x→a}(f(x)/g(x)) =А/В
Теорема 2: lim f1(x)= А1 lim f2(x) = А2, f1(x)<=f2(x), x D(f) => A1<A2
Теорема 3: lim f1(x)=А, lim f2(x) = А, f1(x)<f(x)<f2(x) => lim f(x) =A
Определение: если при вычислении предела lim{x→a}f(x) при х→а, Х остаётся всё время меньше (больше) а, то предел называется левым(правым) – оба односторонние.
Замечание: 1) Если сущ-ют и равны м/у собой односторонние пределы, то они равны пределу f(x), при х→а. 2) Если существует предел данной функции, то существует и его односторонние пределы.
Первый и второй замечательные пределы.
Первый замечательный предел
Доказательство
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Пусть . Отложим этот угол на единичной окружности (R = 1).Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.Очевидно, что:
(1)
(где SsectOKA — площадь сектора OKA)
(из : | LA | = tgx)
Подставляя в (1), получим:
Так как при :
Умножаем на sinx:
Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия
Второй замечательный предел
Доказательство второго замечательного предела:
Доказательство второго замечательного предела для случая последовательности (т.е. для натуральных значений x)
Докажем вначале теорему для случая последовательности
По формуле бинома Ньютона:
Полагая , получим:
(1)
Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывет, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдем по формуле суммы членов геометрической прогрессии:
.
Поэтому (3).
Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): .
Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, т.е. докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где n = [x] - это целая часть x.
Отсюда следует: , поэтому
.
Если , то . Поэтому, согласно пределу , имеем:
.
По признаку (о пределе промежуточной функции) существования пределов .
2. Пусть . Сделаем подстановку − x = t, тогда
.
Из двух этих случаев вытекает, что для любого x.