Арифметическая и геометрическая прогрессии

Числовые последовательности

Арифметические прогрессии

Геометрические прогрессии

Числовые последовательности

1.Последовательность за­да­на фор­му­лой Арифметическая и геометрическая прогрессии - student2.ru . Какое из ука­зан­ных чисел яв­ля­ет­ся чле­ном этой последовательности?

1) 1 2) 2 3) 3 4) 4

Решение.

Рассмотрим не­сколь­ко пер­вых чле­нов последовательности, на­чи­ная с Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Тем самым, число 3 яв­ля­ет­ся чле­ном этой последовательности.

Ответ: 3.

Ответ: 3

Задание 11 № 137295

2.Последовательность за­да­на фор­му­лой Арифметическая и геометрическая прогрессии - student2.ru . Какое из сле­ду­ю­щих чисел не яв­ля­ет­ся чле­ном этой последовательности?

1) Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru

Решение.

Рассмотрим не­сколь­ко пер­вых чле­нов последовательности, на­чи­ная с Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Тем самым, число Арифметическая и геометрическая прогрессии - student2.ru не яв­ля­ет­ся чле­ном этой последовательности.

Ответ: 3.

Ответ: 3

Задание 11 № 137296

3.Какое из ука­зан­ных чисел не яв­ля­ет­ся чле­ном по­сле­до­ва­тель­но­сти Арифметическая и геометрическая прогрессии - student2.ru

1) Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru

Решение.

Рассмотрим не­сколь­ко пер­вых чле­нов последовательности, на­чи­ная с Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Тем самым, Арифметическая и геометрическая прогрессии - student2.ru не яв­ля­ет­ся чле­ном этой последовательности.

Ответ: 4.

Ответ: 4

Задание 11 № 137297

4.Последовательность за­да­на фор­му­лой Арифметическая и геометрическая прогрессии - student2.ru . Сколь­ко чле­нов в этой по­сле­до­ва­тель­но­сти боль­ше 1?

1) 8 2) 9 3) 10 4) 11

Решение.

Дробь, чис­ли­тель и зна­ме­на­тель ко­то­рой положительны, боль­ше единицы, если чис­ли­тель боль­ше знаменателя. Поэтому, имеем: Арифметическая и геометрическая прогрессии - student2.ru Таким образом, пра­виль­ный ответ ука­зан под но­ме­ром 2.

Ответ: 2.

Ответ: 2

Задание 11 № 137298

5.Последовательности за­да­ны не­сколь­ки­ми пер­вы­ми членами. Одна из них — ариф­ме­ти­че­ская прогрессия. Ука­жи­те ее.

1) Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru ; Арифметическая и геометрическая прогрессии - student2.ru ; Арифметическая и геометрическая прогрессии - student2.ru ; Арифметическая и геометрическая прогрессии - student2.ru ; ...

Решение.

Арифметической про­грес­си­ей на­зы­ва­ет­ся такая по­сле­до­ва­тель­ность в ко­то­рой раз­ность между по­сле­ду­ю­щим и преды­ду­щим чле­на­ми про­грес­сии оста­ет­ся неизменной. По­это­му ариф­ме­ти­че­ская про­грес­сия яв­ля­ет­ся последовательность: 1; 3; 5; ... Таким образом, пра­виль­ный ответ ука­зан под но­ме­ром 3.

Ответ: 3.

Ответ: 3

Задание 11 № 137299

6.Одна из дан­ных по­сле­до­ва­тель­но­стей яв­ля­ет­ся гео­мет­ри­че­ской прогрессией. Ука­жи­те эту последовательность.

1) Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru ; Арифметическая и геометрическая прогрессии - student2.ru ; Арифметическая и геометрическая прогрессии - student2.ru ; Арифметическая и геометрическая прогрессии - student2.ru ; ...

Решение.

Геометрической про­грес­си­ей на­зы­ва­ют чис­ло­вую последовательность, пер­вый член ко­то­рой от­ли­чен от нуля, а каж­дый последующий, равен предшествующему, умно­жен­но­му на одно и тоже от­лич­ное от нуля число. По­это­му гео­мет­ри­че­ской про­грес­си­ей яв­ля­ет­ся последовательность: Арифметическая и геометрическая прогрессии - student2.ru Таким образом, пра­виль­ный ответ ука­зан под но­ме­ром 2.

Ответ: 2.

Ответ: 2

Задание 11 № 137300

7.Какая из сле­ду­ю­щих по­сле­до­ва­тель­но­стей яв­ля­ет­ся ариф­ме­ти­че­ской прогрессией?

1) По­сле­до­ва­тель­ность на­ту­раль­ных сте­пе­ней числа 2.
2) По­сле­до­ва­тель­ность на­ту­раль­ных чисел, крат­ных 5.
3) По­сле­до­ва­тель­ность кубов на­ту­раль­ных чисел.
4) По­сле­до­ва­тель­ность всех пра­виль­ных дробей, чис­ли­тель ко­то­рых на 1 мень­ше знаменателя.

Решение.

Ариф­ме­ти­че­ской про­грес­си­ей на­зы­ва­ет­ся такая по­сле­до­ва­тель­ность в ко­то­рой раз­ность между по­сле­ду­ю­щим и преды­ду­щим чле­на­ми про­грес­сии оста­ет­ся не­из­мен­ной. По­это­му ариф­ме­ти­че­ская про­грес­сия яв­ля­ет­ся по­сле­до­ва­тель­ность: 5; 10; 15; ... Таким об­ра­зом, пра­виль­ный ответ ука­зан под но­ме­ром 2.

Ответ: 2.

Ответ: 2

Задание 11 № 137306

8.Последовательность за­да­на усло­ви­я­ми Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru . Най­ди­те Арифметическая и геометрическая прогрессии - student2.ru .

Решение.

Будем вы­чис­лять последовательно: Арифметическая и геометрическая прогрессии - student2.ru

Данная по­сле­до­ва­тель­ность об­ра­зу­ет ариф­ме­ти­че­скую прогрессию. Най­дем раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru Арифметическая и геометрическая прогрессии - student2.ru тогда Арифметическая и геометрическая прогрессии - student2.ru

Примечание.

Зная раз­ность и пер­вый член ариф­ме­ти­че­ской прогрессии, можно найти Арифметическая и геометрическая прогрессии - student2.ru посредственно:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −9.

Ответ: -9

-9

Задание 11 № 137307

9.Последовательность за­да­на усло­ви­я­ми Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru . Най­ди­те Арифметическая и геометрическая прогрессии - student2.ru .

Решение.

Найдём не­сколь­ко пер­вых чле­нов последовательности:

Арифметическая и геометрическая прогрессии - student2.ru

Отсюда ясно, что все члены по­сле­до­ва­тель­но­сти с нечётными но­ме­ра­ми равны 4.

Ответ: 4.

Примечание.

Из ре­кур­рент­ной формулы, за­да­ю­щей n-й член последовательности, можно не­по­сред­ствен­но получить, что

Арифметическая и геометрическая прогрессии - student2.ru

Отсюда ясно, что все члены по­сле­до­ва­тель­но­сти с нечётными но­ме­ра­ми равны пер­во­му члену последовательности, а все члены по­сле­до­ва­тель­но­сти с чётными равны вто­ро­му члену последовательности.

Ответ: 4

Задание 11 № 341203

10.Последовательность за­да­на фор­му­лой Арифметическая и геометрическая прогрессии - student2.ru Сколь­ко чле­нов в этой по­сле­до­ва­тель­но­сти боль­ше 6?

Решение.

Необходимо ре­шить неравенство:

Арифметическая и геометрическая прогрессии - student2.ru

Поскольку n — целые числа, не­ра­вен­ство выполняется при n рав­ном 1, 2, 3 и 4. Таким образом, че­ты­ре члена дан­ной последовательности боль­ше 6.

Ответ: 4.

Ответ: 4

Источник: Банк заданий ФИПИ

Задание 11 № 341669

11.Сколько на­ту­раль­ных чисел n удо­вле­тво­ря­ет не­ра­вен­ству Арифметическая и геометрическая прогрессии - student2.ru ?

Решение.

Дробь, чис­ли­тель и зна­ме­на­тель ко­то­рой положительны, боль­ше двух, если чис­ли­тель боль­ше зна­ме­на­те­ля более чем в два раза. Поэтому, имеем: Арифметическая и геометрическая прогрессии - student2.ru Таким образом, во­сем­на­дцать на­ту­раль­ных чисел удо­вле­тво­ря­ют дан­но­му неравенству.

Ответ: 18.

Ответ: 18

Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по математике 29.09.2015 ва­ри­ант МА90103.

Задание 11 № 351753

12.Последовательность за­да­на фор­му­лой Арифметическая и геометрическая прогрессии - student2.ru . Сколь­ко чле­нов в этой по­сле­до­ва­тель­но­сти боль­ше 3?

Арифметические прогрессии

1.Дана ариф­ме­ти­че­ская прогрессия: Арифметическая и геометрическая прогрессии - student2.ru Най­ди­те сумму пер­вых де­ся­ти её членов.

Решение.

Определим раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Сумма пер­вых k-ых чле­нов может быть най­де­на по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Необходимо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 50.

Ответ: 50

Источник: Демонстрационная вер­сия ГИА—2013 по математике.

Задание 11 № 113

2.Дана ариф­ме­ти­че­ская про­грес­сия Арифметическая и геометрическая прогрессии - student2.ru Най­ди­те Арифметическая и геометрическая прогрессии - student2.ru .

Решение.

Определим раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Необходимо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 23.

Ответ: 23

Источник: ГИА по математике 28.05.2013. Основная волна. Вариант 1309.

Задание 11 № 165

3.Дана арифметическая прогрессия Арифметическая и геометрическая прогрессии - student2.ru Найдите сумму первых десяти её членов.

Решение.

Определим разность арифметической прогрессии Арифметическая и геометрическая прогрессии - student2.ru :

Арифметическая и геометрическая прогрессии - student2.ru

Сумма первых k-ых членов может быть найден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Нам необходимо найти Арифметическая и геометрическая прогрессии - student2.ru , поэтому в формулу для нахождения Арифметическая и геометрическая прогрессии - student2.ru ставим 10 вместо Арифметическая и геометрическая прогрессии - student2.ru :

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 75.

Ответ: 75

Источник: ГИА по математике 28.05.2013. Основная волна. Вариант 1317.

Задание 11 № 137301

4.Выписаны пер­вые не­сколь­ко чле­нов ариф­ме­ти­че­ской прогрессии: 3; 6; 9; 12;… Какое из сле­ду­ю­щих чисел есть среди чле­нов этой прогрессии?

1) 83 2) 95 3) 100 4) 102

Решение.

Найдем раз­ность ариф­ме­ти­че­ской прогрессии: Арифметическая и геометрическая прогрессии - student2.ru Зная раз­ность и член ариф­ме­ти­че­ской прогрессии, решим урав­не­ние от­но­си­тель­но n , под­ста­вив дан­ные в фор­му­лу для на­хож­де­ния n-го члена:

Арифметическая и геометрическая прогрессии - student2.ru

Членом про­грес­сии яв­ля­ет­ся число 102. Таким образом, пра­виль­ный ответ ука­зан под но­ме­ром 4.

Ответ: 4.

Примечание.

Заданная ариф­ме­ти­че­ская про­грес­сия со­сто­ит из чисел, крат­ных трём. Числа 83, 95 и 100 не крат­ны 3, они не яв­ля­ют­ся чле­на­ми прогрессии; а число 102 крат­но 3, оно яв­ля­ет­ся её членом.

Ответ: 4

Задание 11 № 137302

5.Арифметические про­грес­сии Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru и Арифметическая и геометрическая прогрессии - student2.ru за­да­ны фор­му­ла­ми n-го члена: Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru

Укажите те из них, у ко­то­рых раз­ность Арифметическая и геометрическая прогрессии - student2.ru равна 4.

1) Арифметическая и геометрическая прогрессии - student2.ru и Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru и Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru и Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru

Решение.

Найдем Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Для каж­дой из про­грес­сий Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru и Арифметическая и геометрическая прогрессии - student2.ru най­дем разность:

Арифметическая и геометрическая прогрессии - student2.ru

Разность про­грес­сии равна 4 для про­грес­сии Арифметическая и геометрическая прогрессии - student2.ru и Арифметическая и геометрическая прогрессии - student2.ru . Таким образом, вер­ный ответ ука­зан под но­ме­ром 2.

Ответ: 2.

Ответ: 2

Задание 11 № 137303

6.В пер­вом ряду ки­но­за­ла 30 мест, а в каж­дом сле­ду­ю­щем на 2 места больше, чем в предыдущем. Сколь­ко мест в ряду с но­ме­ром n?

1) Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru

Решение.

Количество мест в рядах ки­но­за­ла об­ра­зу­ют ариф­ме­ти­че­скую прогрессию. По фор­му­ле для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Таким образом, пра­виль­ный ответ ука­зан под но­ме­ром 1.

Ответ: 1.

Ответ: 1

Задание 11 № 137304

7.Дана ариф­ме­ти­че­ская прогрессия: 33; 25; 17; … Най­ди­те пер­вый от­ри­ца­тель­ный член этой прогрессии.

1) Арифметическая и геометрическая прогрессии - student2.ru 2) Арифметическая и геометрическая прогрессии - student2.ru 3) Арифметическая и геометрическая прогрессии - student2.ru 4) Арифметическая и геометрическая прогрессии - student2.ru

Решение.

Для члена Арифметическая и геометрическая прогрессии - student2.ru имеем: Арифметическая и геометрическая прогрессии - student2.ru По фор­му­ле на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Первое число, ко­то­рое удо­вле­тво­ря­ет этому усло­вию, число 6. Следовательно, пер­вым от­ри­ца­тель­ным чле­ном про­грес­сии яв­ля­ет­ся Арифметическая и геометрическая прогрессии - student2.ru

Таким образом, пра­виль­ный ответ ука­зан под но­ме­ром 1.

Ответ: 1.

Ответ: 1

Задание 11 № 137305

8.Арифметическая про­грес­сия за­да­на условиями: Арифметическая и геометрическая прогрессии - student2.ru , Арифметическая и геометрическая прогрессии - student2.ru . Какое из дан­ных чисел яв­ля­ет­ся чле­ном этой прогрессии?

1) 80 2) 56 3) 48 4) 32

Решение.

Найдем раз­ность ариф­ме­ти­че­ской прогрессии: Арифметическая и геометрическая прогрессии - student2.ru

Зная раз­ность и пер­вый член ариф­ме­ти­че­ской прогрессии, решим урав­не­ние от­но­си­тель­но Арифметическая и геометрическая прогрессии - student2.ru , под­ста­вив дан­ные в фор­му­лу для на­хож­де­ния n-го члена:

Арифметическая и геометрическая прогрессии - student2.ru

Таким образом, число 48 яв­ля­ет­ся чле­ном прогрессии. Пра­виль­ный ответ ука­зан под но­ме­ром 3.

Ответ: 3.

Ответ: 3

Задание 11 № 311254

9.Найдите сумму всех от­ри­ца­тель­ных чле­нов ариф­ме­ти­че­ской прогрессии: −8,6; −8,4; ...

Решение.

1. Найдём раз­ность прогрессии: Арифметическая и геометрическая прогрессии - student2.ru .

2. Найдём число от­ри­ца­тель­ных чле­нов прогрессии.

Составим фор­му­лу Арифметическая и геометрическая прогрессии - student2.ru -го члена: Арифметическая и геометрическая прогрессии - student2.ru .

Решим не­ра­вен­ство Арифметическая и геометрическая прогрессии - student2.ru по­лу­чим Арифметическая и геометрическая прогрессии - student2.ru < 44. Значит, Арифметическая и геометрическая прогрессии - student2.ru = 43.

3. Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −189,2.

Ответ: -189,2

-189,2

Задание 11 № 311330

10.Арифметическая про­грес­сия Арифметическая и геометрическая прогрессии - student2.ru за­да­на фор­му­лой n-го члена Арифметическая и геометрическая прогрессии - student2.ru и известно, что Арифметическая и геометрическая прогрессии - student2.ru . Най­ди­те пятый член этой прогрессии.

Решение.

Найдём раз­ность прогрессии: Арифметическая и геометрическая прогрессии - student2.ru

Тогда для пя­то­го члена про­грес­сии Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 11.

Ответ: 11

Источник: 9 класс. Математика. Краевая диагностическая работа. Краснодар (вар. 2)

Задание 11 № 311363

11.В ариф­ме­ти­че­ской про­грес­сии Арифметическая и геометрическая прогрессии - student2.ru известно, что Арифметическая и геометрическая прогрессии - student2.ru . Най­ди­те четвёртый член этой прогрессии.

Решение.

Имеем: Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 7.

Ответ: 7

Источник: 9 класс. Математика. Краевая диагностическая работа. Краснодар (вар.5)

Задание 11 № 311909

12.Арифметическая про­грес­сия за­да­на условиями: Арифметическая и геометрическая прогрессии - student2.ru Арифметическая и геометрическая прогрессии - student2.ru . Най­ди­те сумму пер­вых 19 её членов.

Решение.

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии да­ёт­ся формулой

Арифметическая и геометрическая прогрессии - student2.ru

По условию, Арифметическая и геометрическая прогрессии - student2.ru Арифметическая и геометрическая прогрессии - student2.ru от­ку­да получаем

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 95.

Ответ: 95

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 19.11.2013 ва­ри­ант МА90201.

Задание 11 № 314399

13.Какое наи­боль­шее число по­сле­до­ва­тель­ных на­ту­раль­ных чисел, на­чи­ная с 1, можно сло­жить, чтобы по­лу­чив­ша­я­ся сумма была мень­ше 528?

Решение.

Для от­ве­та на во­прос за­да­чи тре­бу­ет­ся найти такое наи­боль­шее Арифметическая и геометрическая прогрессии - student2.ru что Арифметическая и геометрическая прогрессии - student2.ru Рас­смот­рим ариф­ме­ти­че­скую про­грес­си­ю с пер­вым чле­ном Арифметическая и геометрическая прогрессии - student2.ru и раз­но­стью Арифметическая и геометрическая прогрессии - student2.ru Cумма Арифметическая и геометрическая прогрессии - student2.ru пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии вы­чис­ля­ет­ся по формуле:

Арифметическая и геометрическая прогрессии - student2.ru

в нашем слу­чае

Арифметическая и геометрическая прогрессии - student2.ru

Найдем наи­боль­шее на­ту­раль­ное ре­ше­ние не­ра­вен­ства Арифметическая и геометрическая прогрессии - student2.ru . Для этого найдём корни урав­не­ния

Арифметическая и геометрическая прогрессии - student2.ru

Вы­чис­лим дискриминант:

Арифметическая и геометрическая прогрессии - student2.ru

от­ку­да получаем:

Арифметическая и геометрическая прогрессии - student2.ru

Таким образом, при Арифметическая и геометрическая прогрессии - student2.ru сумма 32 сла­га­е­мых равна 528. Следовательно, наи­боль­шее на­ту­раль­ное число, для ко­то­ро­го сумма будет мень­ше 528, равно 31.

Ответ: 31.

Примечание.

Можно заметить, что Арифметическая и геометрическая прогрессии - student2.ru от­ку­да сразу же получаем: Арифметическая и геометрическая прогрессии - student2.ru или Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 31

Источник: Банк заданий ФИПИ

Задание 11 № 314408

14.Най­ди­те сумму всех по­ло­жи­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии 11,2; 10,8; …

Решение.

Определим раз­ность прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Найдём вы­ра­же­ние для n-го члена прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

.

Найдем номер по­след­не­го по­ло­жи­тель­но­го члена прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Следовательно, чтобы найти сумму всех по­ло­жи­тель­ных чле­нов дан­ной ариф­ме­ти­че­ской про­грес­сии не­об­хо­ди­мо сло­жить её пер­вые 28 членов.

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии даётся формулой

Арифметическая и геометрическая прогрессии - student2.ru

откуда имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 162,4.

Ответ: 162,4

162,4

Источник: Банк заданий ФИПИ

Задание 11 № 314423

15.Какое наи­мень­шее число по­сле­до­ва­тель­ных на­ту­раль­ных чисел, на­чи­ная с 1, нужно сло­жить, чтобы по­лу­чив­ша­я­ся сумма была боль­ше 465?

Решение.

Для от­ве­та на во­прос за­да­чи тре­бу­ет­ся найти такое наи­мень­шее Арифметическая и геометрическая прогрессии - student2.ru что Арифметическая и геометрическая прогрессии - student2.ru Рас­смот­рим ариф­ме­ти­че­скую про­грес­си­ю с пер­вым чле­ном Арифметическая и геометрическая прогрессии - student2.ru и раз­но­стью Арифметическая и геометрическая прогрессии - student2.ru Cумма Арифметическая и геометрическая прогрессии - student2.ru пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии вы­чис­ля­ет­ся по формуле:

Арифметическая и геометрическая прогрессии - student2.ru

в нашем слу­чае

Арифметическая и геометрическая прогрессии - student2.ru

Найдем наи­мень­шее на­ту­раль­ное ре­ше­ние не­ра­вен­ства Арифметическая и геометрическая прогрессии - student2.ru . Для этого найдём корни урав­не­ния

Арифметическая и геометрическая прогрессии - student2.ru

Вы­чис­лим дискриминант:

Арифметическая и геометрическая прогрессии - student2.ru

от­ку­да получаем:

Арифметическая и геометрическая прогрессии - student2.ru

Таким образом, при Арифметическая и геометрическая прогрессии - student2.ru сумма 30 сла­га­е­мых равна 465. Следовательно, наи­меньшее на­ту­раль­ное число, для ко­то­ро­го сумма будет боль­ше 465, равно 31.

Ответ: 31.

Примечание.

Можно заметить, что Арифметическая и геометрическая прогрессии - student2.ru от­ку­да сразу же получаем: Арифметическая и геометрическая прогрессии - student2.ru или Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 31

Источник: Банк заданий ФИПИ

Задание 11 № 314425

16.Най­ди­те сумму всех от­ри­ца­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии –7,2; –6,9; …

Решение.

Определим раз­ность прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Найдём вы­ра­же­ние для n-го члена прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

.

Найдем номер по­след­не­го от­ри­ца­тель­но­го члена прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Следовательно, чтобы найти сумму всех от­ри­ца­тель­ных чле­нов дан­ной ариф­ме­ти­че­ской про­грес­сии не­об­хо­ди­мо сло­жить её пер­вые 24 члена.

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии даётся формулой

Арифметическая и геометрическая прогрессии - student2.ru

откуда имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −90.

Ответ: -90

-90

Источник: Банк заданий ФИПИ

Задание 11 № 314619

17.Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на усло­ви­я­ми: a1 = 3, an + 1 = an + 4. Най­ди­те a10.

Решение.

Опре­де­лим раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Не­об­хо­ди­мо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 39.

Ответ: 39

Источник: Банк заданий ФИПИ

Задание 11 № 314628

18.Записаны пер­вые три члена ариф­ме­ти­че­ской прогрессии: 20; 17; 14. Какое число стоит в этой ариф­ме­ти­че­ской про­грес­сии на 91-м месте?

Решение.

Опре­де­лим раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Не­об­хо­ди­мо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −250.

Ответ: -250

-250

Источник: Банк заданий ФИПИ

Задание 11 № 314653

19.Дана ариф­ме­ти­че­ская про­грес­сия (аn): −6; −2; 2; … . Най­ди­те a16.

Решение.

Опре­де­лим раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Не­об­хо­ди­мо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 54.

Ответ: 54

Источник: Банк заданий ФИПИ

Задание 11 № 316343

20.Выписаны пер­вые не­сколь­ко чле­нов ариф­ме­ти­че­ской прогрессии: −87 ; −76; −65; … Най­ди­те пер­вый по­ло­жи­тель­ный член этой прогрессии.

Решение.

Определим раз­ность ариф­ме­ти­че­ской прогрессии:

Арифметическая и геометрическая прогрессии - student2.ru

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Нам же нужно найти пер­вый по­ло­жи­тель­ный член этой прогрессии, т. е. нужно, чтобы вы­пол­ня­лось усло­вие Арифметическая и геометрическая прогрессии - student2.ru Решим не­ра­вен­ство Арифметическая и геометрическая прогрессии - student2.ru :

Арифметическая и геометрическая прогрессии - student2.ru

Значит Арифметическая и геометрическая прогрессии - student2.ru — пер­вый по­ло­жи­тель­ный член этой прогрессии.

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 1.

Ответ: 1

Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 19.02.2014 ва­ри­ант МА90501.

Задание 11 № 321384

21.В пер­вом ряду ки­но­за­ла 24 места, а в каж­дом сле­ду­ю­щем на 2 боль­ше, чем в преды­ду­щем. Сколь­ко мест в вось­мом ряду?

Решение.

Число мест в ряду пред­став­ля­ет собой ариф­ме­ти­че­скую про­грес­сию с пер­вым чле­ном Арифметическая и геометрическая прогрессии - student2.ru и раз­но­стью Арифметическая и геометрическая прогрессии - student2.ru Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Необходимо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 38.

Ответ: 38

Задание 11 № 321394

22. Арифметическая и геометрическая прогрессии - student2.ru Фи­гу­ра со­став­ля­ет­ся из квад­ра­тов так, как по­ка­за­но на ри­сун­ке: в каж­дой сле­ду­ю­щей стро­ке на 8 квад­ра­тов боль­ше, чем в преды­ду­щей. Сколь­ко квад­ра­тов в 16-й стро­ке?

Решение.

Число квад­ра­тов в стро­ке пред­став­ля­ет собой ариф­ме­ти­че­скую про­грес­сию с пер­вым чле­ном Арифметическая и геометрическая прогрессии - student2.ru и раз­но­стью Арифметическая и геометрическая прогрессии - student2.ru Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru может быть най­ден по формуле

Арифметическая и геометрическая прогрессии - student2.ru

Необходимо найти Арифметическая и геометрическая прогрессии - student2.ru , имеем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 122.

Ответ: 122

Задание 11 № 321663

23.Вы­пи­са­но не­сколь­ко по­сле­до­ва­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии: …; −9; x; −13; −15; … Най­ди­те член про­грес­сии, обо­зна­чен­ный бук­вой x .

Решение.

Найдем раз­ность ариф­ме­ти­че­ской прогрессии: Арифметическая и геометрическая прогрессии - student2.ru По­это­му Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −11.

Ответ: -11

-11

Задание 11 № 339063

24.Дана ариф­ме­ти­че­ская про­грес­сия (an), раз­ность ко­то­рой равна 2,5, a1 = 8,7. Най­ди­те a9.

Решение.

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru можно найти по фор­му­ле Арифметическая и геометрическая прогрессии - student2.ru Тре­бу­ет­ся найти Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 28,7.

Ответ: 28,7

28,7

Задание 11 № 340584

25.Даны пят­на­дцать чисел, пер­вое из ко­то­рых равно 6, а каж­дое сле­ду­ю­щее боль­ше преды­ду­ще­го на 4. Найти пят­на­дца­тое из дан­ных чисел.

Решение.

Последовательность, опи­сан­ная в условии, об­ра­зу­ет ариф­ме­ти­че­скую про­грес­сию с пер­вым членом, рав­ным шести, и раз­но­стью 4. Пят­на­дца­тый член дан­ной про­грес­сии равен: Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 62.

Ответ: 62

Источник: Де­мон­стра­ци­он­ная вер­сия ОГЭ—2018 по математике., Демонстрационная вер­сия ГИА—2015.

Задание 11 № 341190

26.Дана ариф­ме­ти­че­ская про­грес­сия (an), раз­ность ко­то­рой равна −8,5, a1 = −6,8. Най­ди­те a11.

Решение.

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром Арифметическая и геометрическая прогрессии - student2.ru можно найти по фор­му­ле Арифметическая и геометрическая прогрессии - student2.ru Тре­бу­ет­ся найти Арифметическая и геометрическая прогрессии - student2.ru

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −91,8.

Ответ: -91,8

-91,8

Источник: Банк заданий ФИПИ

Задание 11 № 341201

27.Арифметическая про­грес­сия Арифметическая и геометрическая прогрессии - student2.ru за­да­на условиями: Арифметическая и геометрическая прогрессии - student2.ru Най­ди­те Арифметическая и геометрическая прогрессии - student2.ru

Решение.

Воспользовавшись формулой, получаем:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −30,4.

Ответ: -30,4

-30,4

Источник: Банк заданий ФИПИ

Задание 11 № 341202

28.Дана ариф­ме­ти­че­ская про­грес­сия (an), для ко­то­рой a10 = 19, a15 = 44. Най­ди­те раз­ность прогрессии.

Решение.

Член ариф­ме­ти­че­ской про­грес­сии с но­ме­ром n вы­чис­ля­ет­ся по фор­му­ле Арифметическая и геометрическая прогрессии - student2.ru Зная, что a10 = 19, b15 = 44, по­лу­ча­ем си­сте­му уравнений. Вы­чтем пер­вое урав­не­ние из вто­ро­го и решим систему:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 5.

Ответ: 5

Источник: Банк заданий ФИПИ

Задание 11 № 341214

29.Арифметическая про­грес­сия за­да­на усло­ви­ем an = −0,6 + 8,6n. Най­ди­те сумму пер­вых 10 её членов.

Решение.

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии да­ёт­ся формулой

Арифметическая и геометрическая прогрессии - student2.ru

Найдем раз­ность и пер­вый член про­грес­сии :

Арифметическая и геометрическая прогрессии - student2.ru

Подставим най­ден­ные зна­че­ния в формулу:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 467.

Ответ: 467

Источник: Банк заданий ФИПИ

Задание 11 № 341221

30.Дана ариф­ме­ти­че­ская про­грес­сия (an), раз­ность ко­то­рой равна −2,5, a1 = −9,1. Най­ди­те сумму пер­вых 15 её членов.

Решение.

Сумма n пер­вых чле­нов ариф­ме­ти­че­ской про­грес­сии да­ёт­ся формулой

Арифметическая и геометрическая прогрессии - student2.ru

По условию, Арифметическая и геометрическая прогрессии - student2.ru Арифметическая и геометрическая прогрессии - student2.ru от­ку­да получаем

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: −399.

Ответ: -399

-399

Источник: Банк заданий ФИПИ

Задание 11 № 341492

31.Арифметическая про­грес­сия за­да­на усло­ви­ем an = −11,9 + 7,8n . Най­ди­те a11.

Решение.

Подставим 11 вме­сто ин­дек­са n:

Арифметическая и геометрическая прогрессии - student2.ru

Ответ: 73,9.

Ответ: 73,9

73,9

Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке 07.05.2015 ва­ри­ант МА90901.

Задание 11 № 341518

32.Первый член ариф­ме­ти­че­ской про­грес­сии равен −11,9, а раз­ность про­грес­сии равна 7,8. Най­ди­те две­на­дца­тый чле

Наши рекомендации