Задачи и упражнения по теории рядов
(Контрольная работа № 5 «Числовые и функциональные ряды»)
В задачах 501-510 исследовать сходимость рядов, пользуясь признаком сходимости Даламбера.
501. 502.
503. 504.
505. 506.
507. 508.
509. 510.
В задачах 511-520 исследовать сходимость рядов, пользуясь интегральным признаком сходимости Коши.
511. 512.
513. 514.
515. 516.
517. 518.
519. 520.
В задачах 521-540 дан степенной ряд
Написать первые четыре члена ряда, найти интервал сходимости ряда и выяснить вопрос о сходимости ряда на концах интервала. Значения а, b и k даны.
521. 522.
523. 524.
525. 526.
527. 528.
529. 530.
531. 532.
533. 534.
535. 536.
537. 538.
539. 540.
В задачах 541-560 требуется вычислить определенный интеграл с точностью до 0,001 путем предварительного разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.
541. 542.
543. 544.
545. 546.
547. 548.
549. 550.
551. 552.
553. 554.
555. 556.
557. 558.
559. 560.
В задачах 561-572 разложить в ряд Фурье периодическую функцию f(x), заданную на интервале-периоде
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573. Функцию в интервале (0, 2) разложить в ряд косинусов.
574. Функцию в интервале (0, p) разложить в ряд косинусов.
575. Функцию в интервале (0, 1) разложить в ряд синусов.
576. Функцию в интервале (0, p) разложить в ряд синусов.
577. Функцию в интервале (0, 1) разложить в ряд косинусов.
578. Функцию в интервале (0, p) разложить в ряд косинусов.
579. Функцию в интервале (0, 2) разложить в ряд синусов.
580. Функцию в интервале (0, 1) разложить в ряд синусов.
ЗАДАЧИ И УПРАЖНЕНИЯ ПО ТЕОРИИ
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
(Контрольная работа № 6 «Дифференциальные уравнения»)
В задачах 581-590 найти общее решение (общий интеграл) дифференциальных уравнений первого порядка.
581. 582.
583. 584.
585. 586.
587. 588.
589. 590.
В задачах 591-600найти частное решение дифференциального уравнения, удовлетворяющее указанным начальным условиям.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
В задачах 601-620 даны дифференциальные уравнения второго порядка, допускающие понижение порядка. Найти частное решение, удовлетворяющее указанным начальным условиям.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
В задачах 621-640 даны линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Найти частное решение, удовлетворяющее указанным начальным условиям.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
В задачах 641-650 требуется решить систему уравнений и выделить частные решения, удовлетворяющие указанным начальным условиям.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651. Найти уравнение кривой, проходящей через точку А (2;3) и обладающей тем свойством, что отрезок любой касательной к кривой, заключенный между осями координат, делится в точке касания пополам. Построить кривую.
652. Найти уравнение кривой, проходящей через точку А (2;4), если угловой коэффициент касательной в любой точке кривой в три раза больше углового коэффициента прямой, соединяющей ту же точку с началом координат. Построить кривую.
653. Найти уравнение кривой, проходящей через точку А (1;1) и обладающей тем свойством, что отрезок, отсекаемый касательной на оси ординат, равен квадрату абсциссы точки касания. Построить кривую.
654. Найти уравнение кривой, проходящей через точку А (1;2) и обладающей тем свойством, что отрезок касательной между точкой касания и осью Ох делится пополам в точке пересечения с осью Оу. Построить кривую.
655. Найти уравнение кривой, проходящей через точку А (-1;1), если угловой коэффициент касательной в любой точке кривой равен квадрату ординаты точки касания. Построить кривую.
656. Найти уравнение кривой, проходящей через точку А (1;2), если поднормаль в каждой точке равна 2. Построить кривую.
657. Найти уравнение кривой, проходящей через точку А (2;4), если угловой коэффициент касательной в любой точке кривой в два раза меньше углового коэффициента прямой, соединяющей ту же точку с началом координат. Построить кривую.
658. Найти уравнение кривой, проходящей через точку А (2;-4), если начальная ордината касательной, проведенной в любой точке кривой, равна кубу абсциссы точки касания. Построить кривую.
659. Найти уравнение кривой, проходящей через точку А (0;3), если угловой коэффициент касательной, проведенной в любой ее точке, меньше ординаты точки касания на 2. Построить кривую.
660. Найти уравнение кривой, проходящей через точку А (2;2), если длина отрезка касательной между точкой касания и осью Ох равна длине отрезка между точкой касания и началом координат. Построить кривую.
В задачах 661-680 при указанных начальных условиях найти три первых, отличных от нуля члена разложения в степенной ряд функции y=f(x), являющейся решением заданного дифференциального уравнения.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
Примечание. Задачи 641-660не включены в таблицы 3 и 4 выполнения контрольных работ. Решением кафедр высшей математики вузов МЧС эти задачи могут быть дополнительно включены полностью или частично в контрольную работу 6.