Смешанное произведение векторов в координатах
Способ расчёта смешанного произведения векторов чисто алгебраический:
Смешанное произведение векторов , заданных в ортонормированном базисе правой ориентации, выражается формулой:
Определение, строго говоря, неполное, но в теоретические тонкости вникать не будем, правая ориентация базиса – это его «нормальная» ориентация, в которой мы будем решать практические задачи. Вполне достаточно.
Как и для векторного произведения, координаты векторов следует «укладывать» в определитель в строгом порядке. Если в смешанном произведении выбрать два вектора (любых) и переставить их местами, то нужно переставить и соответствующие строки определителя. А по свойству определителя, при перестановке двух строк он меняет знак. Таким образом, при перестановке любых двух векторов смешанное произведение меняет знак.
Следует отметить, что координаты векторов не обязательно записывать в строки, их можно записать и в столбцы – слева направо, и тоже в строгом порядке:
Значение определителя от этого не изменится.
Второй важный момент касается компланарности векторов. Как уже отмечалось, если векторы компланарны, то
Такое задание уже было!
Пример 11
Даны векторы .
Вычислить:
а) смешанное произведение векторов;
б) объём параллелепипеда, построенного на векторах ;
в) объём тетраэдра, построенного на векторах .
Решение: Всё быстро и просто:
а) По формуле смешанного произведения:
(Определитель раскрыт по первому столбцу)
б) Объём параллелепипеда, построенного на векторах , равен модулю смешанного произведения данных векторов:
в) Вычислим объём тетраэдра, построенного на данных векторах:
Ответ:
В пункте а) тоже можно было добавить размерность «кубические единицы», но здесь к объёму добавляется знак «минус», поэтому смотреться будет всё-таки не очень.
На практике, по моей субъективной оценке, в 95-99% случаев требуется вычислить объём треугольной пирамиды:
Пример 12
Вычислить объём треугольной пирамиды, если даны её вершины
Решение: рекомендую выполнить схематический рисунок пирамидки, чтобы лучше понять суть проводимых действий.
Сначала найдём векторы:
Вычислим смешанное произведение:
(Определитель раскрыт по первой строке)
Вычислим объём треугольной пирамиды :
Ответ:
Рассмотренная задача имеет не единственное решение, можно было взять и другую группу векторов, начиная движение от любой другой вершины пирамиды. Чем-то похоже на задачу предыдущей части урока о площади треугольника.
Объём тетраэдра – хит смешанного произведения, поэтому заключительный счастливый номер пусть будет таким же:
Пример 13
Вычислить объём пирамиды, заданной вершинами
Это пример для самостоятельного решения. В образце решения рассмотрены векторы, отложенные от «традиционной» точки .
Решения и ответы:
Пример 2: Решение: По соответствующей формуле:
Ответ:
Пример 5: Решение:
1) Выразим вектор через вектор :
2) Вычислим длину векторного произведения:
Ответ:
Пример 7: Решение: 1) Найдём векторное произведение:
2) Вычислим длину векторного произведения:
Ответ:
Пример 9: Решение: Найдём вектор:
.
Векторное произведение:
Площадь параллелограмма:
Ответ:
Пример 13: Решение: Найдём векторы:
Вычислим смешанное произведение:
(Определитель раскрыт по первой строке)
Вычислим объём пирамиды :
Ответ:
Формулы деления отрезка в данном отношении.
Формулы координат середины отрезка
Понятие деления отрезка в данном отношении
Нередко обещанного вовсе ждать не приходится, сразу рассмотрим пару точек и, очевидное невероятное – отрезок :
Рассматриваемая задача справедлива, как для отрезков плоскости, так и для отрезков пространства. То есть, демонстрационный отрезок можно как угодно разместить на плоскости или в пространстве. Для удобства объяснений я нарисовал его горизонтально.
Что будем делать с данным отрезком? На этот раз пилить. Кто-то пилит бюджет, кто-то пилит супруга, кто-то пилит дрова, а мы начнём пилить отрезок на две части. Отрезок делится на две части с помощью некоторой точки , которая, понятно, расположена прямо на нём:
В данном примере точка делит отрезок ТАКИМ образом, что отрезок в два раза короче отрезка . ЕЩЁ можно сказать, что точка делит отрезок в отношении («один к двум»), считая от вершины .
На сухом математическом языке этот факт записывают следующим образом: , или чаще в виде привычной пропорции: . Отношение отрезков принято стандартно обозначать греческой буквой «лямбда», в данном случае: .
Пропорцию несложно составить и в другом порядке: – сия запись означает, что отрезок в два раза длиннее отрезка , но какого-то принципиального значения для решения задач это не имеет. Можно так, а можно так.
Разумеется, отрезок легко разделить в каком-нибудь другом отношении, и в качестве закрепления понятия второй пример:
Здесь справедливо соотношение: . Если составить пропорцию наоборот, тогда получаем: .
После того, как мы разобрались, что значит разделить отрезок в данном отношении, перейдём к рассмотрению практических задач.
Формулы деления отрезка в данном отношении на плоскости
Если известны две точки плоскости , то координаты точки , которая делит отрезок в отношении , выражаются формулами:
Такая вот универсальная задача.
Пример 1
Найти координаты точки , делящей отрезок в отношении , если известны точки
Решение: В данной задаче . По формулам деления отрезка в данном отношении, найдём точку :
Ответ:
Обратите внимание на технику вычислений: сначала нужно отдельно вычислить числитель и отдельно знаменатель. В результате часто (но далеко не всегда) получается трёх- или четырёхэтажная дробь. После этого избавляемся от многоэтажности дроби и проводим окончательные упрощения.
В задаче не требуется строить чертежа, но его всегда полезно выполнить на черновике:
Действительно, соотношение выполняется, то есть отрезок в три раза короче отрезка . Если пропорция не очевидна, то отрезки всегда можно тупо измерить обычной линейкой.
Равноценен второй способ решения: в нём отсчёт начинается с точки и справедливым является отношение: (человеческими словами, отрезок в три раза длиннее отрезка ). По формулам деления отрезка в данном отношении:
Ответ:
Заметьте, что в формулах необходимо переместить координаты точки на первое место, поскольку маленький триллер начинался именно с неё.
Также видно, что второй способ рациональнее ввиду более простых вычислений. Но всё-таки данную задачу чаще решают в «традиционном» порядке. Например, если по условию дан отрезок , то предполагается, что вы составите пропорцию , если дан отрезок , то «негласно» подразумевается пропорция .
А 2-ой способ я привёл по той причине, что частенько условие задачи пытаются намеренно подзапутать. Именно поэтому очень важно выполнять черновой чертёж чтобы, во-первых, правильно проанализировать условие, а, во-вторых, в целях проверки.
Пример 2
Даны точки . Найти:
а) точку , делящую отрезок в отношении ;
б) точку , делящую отрезок в отношении .
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Иногда встречаются задачи, где неизвестен один из концов отрезка:
Пример 3
Точка принадлежит отрезку . Известно, что отрезок в два раза длиннее отрезка . Найти точку , если .
Решение: Из условия следует, что точка делит отрезок в отношении , считая от вершины , то есть, справедлива пропорция: . По формулам деления отрезка в данном отношении:
Сейчас нам неизвестны координаты точки : , но это не является особой проблемой, так как их легко выразить из вышеприведённых формул. В общем виде выражать ничего не стОит, гораздо проще подставить конкретные числа и аккуратно разобраться с вычислениями:
Ответ:
Для проверки можно взять концы отрезка и, пользуясь формулами в прямом порядке, убедиться, что при соотношении действительно получится точка . И, конечно же, конечно же, не лишним будет чертёж. А чтобы окончательно убедить вас в пользе клетчатой тетради, простого карандаша да линейки, предлагаю хитрую задачу для самостоятельного решения:
Пример 4
Точка . Отрезок в полтора раза короче отрезка . Найти точку , если известны координат точек .
Решение в конце урока. Оно, кстати, не единственное, если пойдёте отличным от образца путём, то это не будет ошибкой, главное, чтобы совпали ответы.
Формулы деления отрезка в данном отношении в пространстве
Для пространственных отрезков всё будет точно так же, только добавится ещё одна координата.
Если известны две точки пространства , то координаты точки , которая делит отрезок в отношении , выражаются формулами:
.
Пример 5
Даны точки . Найти координаты точки , принадлежащей отрезку , если известно, что .
Решение: Из условия следует отношение: . Данный пример взят из реальной контрольной работы, и его автор позволил себе небольшую шалость – пропорцию в условии рациональнее было записать так: .
По формулам координат середины отрезка:
Ответ:
Трёхмерные чертежи в целях проверки выполнять значительно сложнее. Однако всегда можно сделать схематический рисунок, чтобы разобраться хотя бы в условии – какие отрезки необходимо соотносить.
Что касается дробей в ответе, не удивляйтесь, обычное дело. В высшей математике принято орудовать обыкновенными правильными и неправильными дробями. Ответ в виде пойдёт, но вариант с неправильными дробями более стандартен.
Разминочная задача для самостоятельного решения:
Пример 6
Даны точки . Найти координаты точки , если известно, что она делит отрезок в отношении .
Решение и ответ в конце. Если трудно сориентироваться в пропорциях, выполните схематический чертёж.
Формулы координат середины отрезка
Даже неподготовленные читатели могут помнить, как разделить отрезок пополам. Задача деления отрезка на две равные части – это частный случай деления отрезка в данном отношении.
пропорция . И общие формулы чудесным образом преображаются в нечто знакомое и простое:
Удобным моментом является тот факт, что координаты концов отрезка можно безболезненно переставить:
Для пространственного случая справедлива очевидная аналогия. Если даны концы отрезка , то координаты его середины выражаются формулами:
Пример 7
Параллелограмм задан координатами своих вершин . Найти точку пересечения его диагоналей.
Решение: По известному свойству, диагонали параллелограмма своей точкой пересечения делятся пополам, поэтому задачу можно решить двумя способами.
Способ первый: Рассмотрим противоположные вершины . По формулам деления отрезка пополам найдём середину диагонали :
В результате:
Способ второй: Рассмотрим противоположные вершины . По формулам деления отрезка пополам найдём середину диагонали :
Таким образом:
Ответ:
Пространственный отрезок для самостоятельного решения:
Пример 8
Даны точки . Найти середину отрезка .
Решение в конце.
Пример 9
Точка делит отрезок пополам. Найти точку , если известны точки
Решение: Используем формулы координат середины отрезка:
Нам неизвестны координаты . И снова можно вывести общую формулу для их нахождения, но гораздо легче сразу подставить числа. Только пропорциями верти:
Ответ:
Проверка выполняется даже устно: берём концы отрезка и находим его середину.
Решения и ответы:
Пример 2: Решение:
а) . Используем формулы деления отрезка в данном отношении:
Ответ:
б) . Используем формулы деления отрезка в данном отношении:
Ответ:
Пример 4: Решение: Используем формулы деления отрезка в данном отношении:
Из условия следует, что .
Примечание: формулировка условия «отрезок в полтора раза короче отрезка » эквивалентна формулировке «отрезок в полтора раза длиннее отрезка », именно из этих соображений и составлена пропорция.
По условию , таким образом:
Ответ:
Пример 6: Решение: Используем формулы деления отрезка в данном отношении:
В данной задаче .
Таким образом:
Ответ:
Пример 8: Решение: Используем формулы координат середины отрезка:
Ответ:
Уравнение прямой на плоскости.
Направляющий вектор прямой. Вектор нормали
Прямая линия на плоскости – это одна из простейших геометрических фигур. Для освоения материала необходимо уметь строить прямую; знать, каким уравнением задаётся прямая, в частности, прямая, проходящая через начало координат и прямые, параллельные координатным осям.
Мы рассмотрим способы, с помощью которых можно составить уравнение прямой на плоскости. Рекомендую не пренебрегать практическими примерами (даже если кажется очень просто), так как я буду снабжать их элементарными и важными фактами, техническими приёмами, которые потребуются в дальнейшем, в том числе и в других разделах высшей математики.
Уравнение прямой с угловым коэффициентом
Всем известный «школьный» вид уравнения прямой называется уравнением прямой с угловым коэффициентом . Например, если прямая задана уравнением , то её угловой коэффициент: . Рассмотрим геометрический смысл данного коэффициента и то, как его значение влияет на расположение прямой:
В курсе геометрии доказывается, что угловой коэффициент прямой равен тангенсу угла между положительным направлением оси и данной прямой: , причём угол «откручивается» против часовой стрелки.
Чтобы не загромождать чертёж, я нарисовал углы только для двух прямых. Рассмотрим «красную» прямую и её угловой коэффициент . Согласно вышесказанному: (угол «альфа» обозначен зелёной дугой). Для «синей» прямой с угловым коэффициентом справедливо равенство (угол «бета» обозначен коричневой дугой). А если известен тангенс угла, то при необходимости легко найти и сам угол с помощью обратной функции – арктангенса. Таким образом, угловой коэффициент характеризует степень наклона прямой к оси абсцисс.
При этом возможны следующие случаи:
1) Если угловой коэффициент отрицателен: , то линия, грубо говоря, идёт сверху вниз. Примеры – «синяя» и «малиновая» прямые на чертеже.
2) Если угловой коэффициент положителен: , то линия идёт снизу вверх. Примеры – «чёрная» и «красная» прямые на чертеже.
3) Если угловой коэффициент равен нулю: , то уравнение принимает вид , и соответствующая прямая параллельна оси . Пример – «жёлтая» прямая.
4) Для семейства прямых , параллельных оси (на чертеже нет примера, кроме самой оси ), угловой коэффициент не определён. В данной ситуации , а тангенса угла 90 градусов не существует.
Чем больше угловой коэффициент по модулю, тем круче идёт график прямой.
Например, рассмотрим две прямые . Здесь , поэтому прямая имеет более крутой наклон. Напоминаю, что модуль позволяет не учитывать знак, нас интересуют только абсолютные значения угловых коэффициентов.
В свою очередь, прямая более крутА, чем прямые .
Обратно: чем меньше угловой коэффициент по модулю, тем прямая является более пологой.
Для прямых справедливо неравенство , таким образом, прямая более полога.
Знания вышеперечисленных фактов позволяет немедленно увидеть свои ошибки, в частности, ошибки при построении графиков – если на чертеже получилось «явно что-то не то». Желательно, чтобы вам сразу было понятно, что, например, прямая весьма крутА и идёт снизу вверх, а прямая – очень полога, близко прижата к оси и идёт сверху вниз.
В геометрических задачах часто фигурируют несколько прямых, поэтому их удобно как-нибудь обозначать.
Обозначения: прямые обозначаются маленькими латинскими буквами: . Популярный вариант – обозначение одной и той же буквой с натуральными подстрочными индексами. Например, те пять прямых, которые мы только что рассмотрели, можно обозначить через .
Поскольку любая прямая однозначно определяется двумя точками, то её можно обозначать данными точками: и т.д. Обозначение совершенно очевидно подразумевает, что точки принадлежат прямой .
Как составить уравнение прямой с угловым коэффициентом?
Если известна точка , принадлежащая некоторой прямой, и угловой коэффициент этой прямой, то уравнение данной прямой выражается формулой:
Пример 1
Составить уравнение прямой с угловым коэффициентом , если известно, что точка принадлежит данной прямой.
Решение: Уравнение прямой составим по формуле . В данном случае:
Ответ:
Проверка выполняется элементарно. Во-первых, смотрим на полученное уравнение и убеждаемся, что наш угловой коэффициент на своём месте. Во-вторых, координаты точки должны удовлетворять данному уравнению. Подставим их в уравнение:
Получено верное равенство, значит, точка удовлетворяет полученному уравнению.
Вывод: уравнение найдено правильно.
пример для самостоятельного решения:
Пример 2
Составить уравнение прямой, если известно, что её угол наклона к положительному направлению оси составляет , и точка принадлежит данной прямой.
Общее уравнение прямой
Ностальгически машем ручкой привычному и знакомимся с общим уравнением прямой. Поскольку в аналитической геометрии в ходу именно оно:
Общее уравнение прямой имеет вид: , где – некоторые числа. При этом коэффициенты одновременно не равны нулю, так как уравнение теряет смысл.
Рассмотрим уравнение с угловым коэффициентом . Сначала перенесём все слагаемые в левую часть:
Слагаемое с «иксом» нужно поставить на первое место:
В принципе, уравнение уже имеет вид , но по правилам математического этикета коэффициент первого слагаемого (в данном случае ) должен быть положительным. Меняем знаки:
Готово.
Запомните эту техническую особенность! Первый коэффициент (чаще всего ) делаем положительным!
В аналитической геометрии уравнение прямой почти всегда будет задано в общей форме. Ну, а при необходимости его легко привести к «школьному» виду с угловым коэффициентом (за исключением прямых, параллельных оси ординат).
Направляющий вектор прямой
Зададимся вопросом, что достаточно знать, чтобы построить прямую?
Вектор, который параллелен прямой, называется направляющим вектором данной прямой. Очевидно, что у любой прямой бесконечно много направляющих векторов, причём все они будут коллинеарны (сонаправлены или нет – не важно).
Направляющий вектор я буду обозначать следующим образом: .
Но одного вектора недостаточно для построения прямой, вектор является свободным и не привязан к какой-либо точке плоскости. Поэтому дополнительно необходимо знать некоторую точку , которая принадлежит прямой.
Как составить уравнение прямой по точке и направляющему вектору?
Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то уравнение данной прямой можно составить по формуле:
Иногда его называют каноническим уравнением прямой.
Что делать, когда одна из координат равна нулю, мы разберёмся в практических примерах ниже. Кстати, заметьте – сразу обе координаты не могут равняться нулю, так как нулевой вектор не задаёт конкретного направления.
Пример 3
Составить уравнение прямой по точке и направляющему вектору
Решение: Уравнение прямой составим по формуле . В данном случае:
С помощью свойств пропорции избавляемся от дробей:
И приводим уравнение к общему виду:
Ответ:
Чертежа в таких примерах, как правило, делать не нужно, но понимания ради:
На чертеже мы видим исходную точку , исходный направляющий вектор (его можно отложить от любой точки плоскости) и построенную прямую . Кстати, во многих случаях построение прямой удобнее всего осуществлять как раз с помощью уравнения с угловым коэффициентом. Наше уравнение легко преобразовать к виду и без проблем подобрать ещё одну точку для построения прямой.
Как отмечалось в начале параграфа, у прямой бесконечно много направляющих векторов, и все они коллинеарны. Для примера я нарисовал три таких вектора: . Какой бы направляющий вектор мы не выбрали, в результате всегда получится одно и то же уравнение прямой .
Составим уравнение прямой по точке и направляющему вектору :
Разруливаем пропорцию:
Делим обе части на –2 и получаем знакомое уравнение:
Желающие могут аналогичным образом протестировать векторы или любой другой коллинеарный вектор.
Теперь решим обратную задачу:
Как найти направляющий вектор по общему уравнению прямой?
Очень просто:
Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является направляющим вектором данной прямой.
Примеры нахождения направляющих векторов прямых:
Утверждение позволяет найти лишь один направляющий вектор из бесчисленного множества, но нам больше и не нужно. Хотя в ряде случаев координаты направляющих векторов целесообразно сократить:
Так, уравнение задаёт прямую, которая параллельна оси и координаты полученного направляющего вектора удобно разделить на –2, получая в точности базисный вектор в качестве направляющего вектора. Логично.
Аналогично, уравнение задаёт прямую, параллельную оси , и, разделив координаты вектора