Совместная система вида (1) может иметь одно или более решений.
Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:
c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2). |
Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.
________________________________.
Ма́тричный метод решения (метод решения через обратную матрицу) систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.
Пусть дана система линейных уравнений с n неизвестными (над произвольным полем):
Тогда её можно переписать в матричной форме:
AX = B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:
Умножим это матричное уравнение слева на A − 1 — матрицу, обратную к матрице A: (Поскольку A-1A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A-1B.)
Так как A − 1A = E, получаем X = A − 1B. Правая часть этого уравнения даст столбец решений исходной системы. Условием применимости данного метода (как и вообще существования решения неоднородной системы линейных уравнений с числом уравнений, равным числу неизвестных) является невырожденность матрицы A. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A:
.
Для однородной системы линейных уравнений, то есть когда вектор B = 0, действительно обратное правило: система AX = 0 имеет нетривиальное (то есть ненулевое) решение только еслиdet A = 0. Такая связь между решениями однородных и неоднородных систем линейных уравнений носит название альтернативы Фредгольма.
Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод.
Пусть дана система линейных уравнений
(1)
Коэффициенты a11,12,..., a1n, ... , an1 , b2 , ... , bn считаются заданными .
Вектор -строка íx1 , x2 , ... , xn
ý - называется решением системы (1), если при подстановке этих чисел
Вместо переменных все уравнения системы (1) обращаются в верное равенство.
Определитель n-го порядка D=çAê=ça ij
ç, составленный из коэффициентов при неизвестных , называется
Определителем системы (1). В зависимости от определителя системы (1) различают
Следующие случаи.
a). Если D¹0, то система (1) имеет единственное решение, которое может
быть найдено по формулам Крамера : x1=
, где
определитель n-го порядка Di ( i=1,2,...,n) получается из
определителя системы путем замены i-го столбца свободными членами b1
, b2 ,..., bn.
б). Если D=0 , то система (1) либо имеет бесконечное множество решений , либо
Несовместна ,т.е. решений нет.
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
__________________________________________