Прямоугольные координаты на плоскости

Ели на плоскости задана прямоугольная декартова система координат xOy, то точку М этой плоскости, имеющую координаты x и y, обозначают
М (x; y).

Расстояние d между точками М1(x1;y1) и М2(x2;y2) определяется по формуле:

прямоугольные координаты на плоскости - student2.ru (1)

В частности, расстояние d точки М(x;y) от начала координат определяется по формуле:

прямоугольные координаты на плоскости - student2.ru (2)

Координаты точки М(x;y), делящей в заданном отношении l отрезок между двумя точками А(x1;y1) и В(x2;y2), определяется по формулам:

x=(x1+lx2) /(1+l) y=(y1+ly2)/(1+l) (3)

В частности, при l=1 получаем формулы для координат середины отрезка:

х=(х1+x2)/2 y=(y1+y2)/2 (4)

ПРЯМАЯ НА ПЛОСКОСТИ

Общее уравнение прямой

Всякое уравнение первой степени, относительно х и у, т.е. уравнение вида:

Ах+Ву+С=0 (5)

где А, В и С постоянные коэффициенты, причем А22¹0, определяет на плоскости некоторую прямую.

Геометрическое место точек плоскости, координаты которых удовлетворяют уравнению Ах+Ву+С=0, называется прямой на плоскости.

Уравнение Ах+Ву+С=0 называется общим уравнением прямой.

Частные случаи:

1. С=0; А¹0, В¹0.

Прямая, определяемая уравнением Ах+Ву=0, проходит через начало координат.

2. А=0; В¹0, С¹0.

Прямая, определяемая уравнением Ву+С=0, параллельна оси Ох.

3. В=0, А¹0, С¹0.

Прямая, определяемая уравнением Ах+С=0, параллельна оси Oу.

4. В=С=0; А¹0.

Прямая, определяемая уравнением Ах=0, совпадает с осью Оу.

5. А=С=0; В¹0.

Прямая, определяемая уравнением Ву=0, совпадает с осью Ох.

Уравнение прямой с угловым коэффициентом

Если в общем уравнении прямой (5) В¹0, то, решив его относительно у, получим уравнение вида

y=kx+b (6)

здесь k=–A/B, b=–С/В. Его называют уравнением с угловым коэффициентом, поскольку k=tga, где a - угол, образованный прямой с положительным направлением оси Ох. Свободный член уравнения(6) b равен ординате точки пересечения прямой с осью Оу.

Уравнение прямой, проходящей через заданную точку М(х00) в заданном направлении

прямоугольные координаты на плоскости - student2.ru (7)

Уравнение прямой в отрезках

Если в общем уравнении прямой (5) С¹0, то разделив все его члены на С, получим уравнение вида

x/a+y/b=1 (8)

где а =–С/А, b=–С/В.

Его называют уравнением прямой в отрезках. В (8) а является абсциссой точки пересечения прямой с осью Ох, а b – ординатой точки пересечения прямой с осью Оу. Поэтому а и b называют отрезками прямой на осях координат.

Уравнение прямой, проходящей через две заданные точки М1(x1;y1) и М2(x2;y2)

прямоугольные координаты на плоскости - student2.ru (9)

Пример 1.

Составить уравнение прямой, отсекающей на оси ординат отрезок b=–2 и имеющей угловой коэффициент k=3.

Решение:

Применяя формулу (6), запишем уравнение искомой прямой:

у=3х–2.

Ответ: у=3х–2.

Пример 2.

Составить уравнение прямой, отсекающей на осях координат отрезки а=2,5 и b=1,5.

Решение:

Воспользовавшись формулой (8) имеем:

х/2,5+у/1,5=1.

Приведем это уравнение к общему виду:

(2/5)х+(2/3)у=1 или 6х+10у–15=0.

Ответ: 6х+10у–15=0.

Пример 3.

Дано общее уравнение прямой 2х–5у+10=0.

Написать: 1) уравнение с угловым коэффициентом;

2) уравнение в отрезках;

3) построить прямую.

Решение:

1) Разрешив уравнение относительно у, получим уравнение с угловым коэффициентом:

5у=2х+10 или у=(2/5)х+2.

Здесь k=2/5; b=2.

2) Перенесем свободный член уравнения в правую часть и разделим обе части на (–10):

2х/(–10)–5у/(–10)=1.

Здесь а=–5; b=2.

3) Построим прямую:

прямоугольные координаты на плоскости - student2.ru

Пример 4.

Составить уравнение прямой, проходящей через начало координат и точку М(–1;5).

Решение:

Воспользуемся формулой (9)

прямоугольные координаты на плоскости - student2.ru ;

–y=5x;

5x+y=0 – общее уравнение прямой.

Ответ: прямоугольные координаты на плоскости - student2.ru

Пример 5.

Составить уравнение прямой, проходящей через точки А(2;–3) и
В(–4;5).

Решение:

Применяя формулу (9) и подставляя х1=2, у1=–3, х2=–4, у2=5, получим:

(у–(–3))/(5–(–3))=(х–2)/(–4–2) или (у+3)/8=(х–2)/(–6), 4(х–2)=–3(у+3).

Искомое уравнение имеет вид 4х+3у+1=0.

Ответ: 4х+3у+1=0


Пример 6.

Даны вершины треугольника А(–1;1), В(5;7), С(–9;3).

Найти уравнения медиан АD, BE, CN.

Решение:

Найдем сначала координаты точки D – середины стороны ВС по формуле (4):

х=(5–9)/2=–2;

у=(7+3)/2=5,

т. е. D(–2; 5).

Уравнение медианы AD находится с помощью уравнения прямой, проходящей через две точки:

(у–1)/(5–1)=(х+1)/(–2+1) или (у–1)/4=(х+1)/(–1),

т. е. 4х+у+3=0.

Ответ: Уравнение медианы AD 4х+у+3=0.

Уравнения медиан ВЕ и CN находятся аналогично.

Угол между двумя прямыми

Угол между прямыми y1=k1x+b1 и y2=k2x+b2 определяется по формуле

tga=(k2–k1)/(1+k2k1) (10)

Наши рекомендации