Основные правила комбинаторики. Перестановки. Размещения. Сочетания

Основные правила комбинаторики. Перестановки. Размещения. Сочетания

В комбинаторике изучают вопросы о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов). раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них

Перестановки.Пусть имеется n различных объектов. Будем переставлять их всеми возможными способами (число объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно перестановки, формулы комбинаторики.Pn=n!=1⋅2⋅3⋅...⋅(n−1)⋅n(0!=1,1!=1) Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Размещения.размещения, формулы комбинаторики.Пусть имеется n различных объектов. Будем выбирать из них m объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из n объектов по m, а их число равно

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Сочетания.Пусть имеется n различных объектов. Будем выбирать из них m объектов все возможными способами (то есть меняется состав выбранных объектов, но порядок не важен). Получившиеся комбинации называются сочетаниями из n объектов по m, а их число равно

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Случайные события. Операции над случайными событиями.

Событием называется любой факт, который в результате опыта может произойти или не произойти. Достоверным называется событие, которое происходит в каждом опыте. Невозможным называется событие, которое в результате опыта произойти не может. Несовместными называются события, которые в одном опыте не могут произойти одновременно. Два события называются совместными, если появление одного не исключает появления другого. События A,A1,Am,называются взаимоисключающимися, если любые 2 из них несовместны.

События Ak (k=1, 2, ..., n) образуют полную группу, если они попарно несовместны и в сумме образуют достоверное событие.

Два события называются Противоположным ,если при наступлении одного, второе произойти не может. Два события наз-ся равновозможными, если нельзя считать, что одно из них более возможно, чем другое.

Операции над событиями.

Суммой (объединением) двух событий A и B (A;B) ,называется такое событие, которое заключается в том, что происходит хотя бы одно из событий, т.е. A или B, или оба одновременно. Произведением двух событий A и B ( A×B) называется такое событие, которое заключается в том, что происходят оба события A и B вместе.

Разностьюсобытий А и В называется со-бытие, состоящее в том, что А происходит, а В не происходит.

Свойства.

1. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 2. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 3. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 4. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 5. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 6. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 7. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 8. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 9. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 10. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 11. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 1. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 2. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 3. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 4. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 5. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 6. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 7. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 8. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 9. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 10. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 11. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru 12. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Геометрические вероятности.

Чтобы преодолеть недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности — вероятности попадания точки в область (отрезок, часть плоскости и т. д.).

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением:
Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru ,
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Доказательство.

Событие Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru произойдет, если наступит одно из двух несовместных событий: Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru , Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru . применяя теорему сложения вероятностей несовместных событий, получаем Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru . Откуда

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru (2.7)

Аналогично для события Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru Откуда

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .(2.8)

Подставив (2.7) и (2.8) в (2.6), находим

P(A+B) = P(A) + P(B) — P(AB)

6. Теорема сложения для несовместных событий:

вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Введем обозначения: n — общее число возможных элементарных исходов испытания; m1 — число исходов, благоприятствующих событию A; m2— число исходов, благоприятствующих событию В.

Число элементарных исходов, благоприятствующих наступлению либо события А, либо события В, равно m1 + m2. Следовательно,

Р (A + В) = (m1 + m2) / n = m1 / n + m2 / n.

Приняв во внимание, что m1 / n = Р (А) и m2 / n = Р (В), окончательно получим

Р (А + В) = Р (А) + Р (В).

Следствие 1. Если события Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru образуют полную группу несовместных событий, то сумма их вероятностей равна единице:

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .

Доказательство. Так как события Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru образуют полную группу, то появление хотя бы одного из них – достоверное событие:

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .

Так как Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru - несовместные события, то к ним применима теорема сложения вероятностей

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru ,

откуда

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Следствие 2. Сумма вероятностей противоположных событий равна единице:

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .

Это следствие есть частный случай следствия 1. Оно выделено особо ввиду его большой важности в практическом применении теории вероятностей. На практике весьма часто оказывается легче вычислить вероятность противоположного события Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru , чем вероятность прямого события Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru . В этих случаях вычисляют Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru и находят Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Доказательство

Пусть проводится Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru независимых испытаний, причём известно, что в результате каждого испытания событие Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru наступает с вероятностью Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru и, следовательно, не наступает с вероятностью Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru . Пусть, так же, в ходе испытаний вероятности Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru и Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru остаются неизменными. Какова вероятность того, что в результате Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru независимых испытаний, событие Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru наступит ровно Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru раз?

Оказывается можно точно подсчитать число "удачных" комбинаций исходов испытаний, для которых событие Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru наступает Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru раз в Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru независимых испытаниях, - в точности это количество сочетаний из Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru по Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru :

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .

В то же время, так как все испытания независимы и их исходы несовместимы (событие Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru либо наступает, либо нет), то вероятность получения "удачной" комбинации в точности равна: Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .

Окончательно, для того чтобы найти вероятность того, что в Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru независимых испытаниях событие Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru наступит ровно Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru раз, нужно сложить вероятности получения всех "удачных" комбинаций. Вероятности получения всех "удачных" комбинаций одинаковы и равны Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru , количество "удачных" комбинаций равно Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru , поэтому окончательно получаем:

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru .

Формула Пуассон

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Локальная теорема Лапласа

. Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Правило трёх сигм.

и рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Линейная корреляция.

Корреляционная зависимость между случайными величинами Х и У называется линейной корреляцией, если обе функции регрессии f(y) и g(x) являются линейными.

Рассчитывается по формуле

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

где Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru , Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru — среднее значение выборок.

Коэффициент корреляции изменяется в пределах от минус единицы до плюс единицы

Доказательство

Разделив обе части двойного неравенства Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru на Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru получим

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Линейный коэффициент корреляции связан с коэффициентом регрессии в виде следующей зависимости: Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru где Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru — коэффициент регрессии, Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru — среднеквадратическое отклонение соответствующего факторного признака.

ВЫБОРОЧНЫЙ МЕТОД

Часть объектов, которая отобрана для непосредственного изучения из генеральнойсовокупности, называется выборочной совокупностью или выборкой.

Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка)– это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N, выборочной – n.

Вариационный ряд

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Интервальное оценивание. Основные понятия

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Основные правила комбинаторики. Перестановки. Размещения. Сочетания

В комбинаторике изучают вопросы о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов). раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них

Перестановки.Пусть имеется n различных объектов. Будем переставлять их всеми возможными способами (число объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно перестановки, формулы комбинаторики.Pn=n!=1⋅2⋅3⋅...⋅(n−1)⋅n(0!=1,1!=1) Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Размещения.размещения, формулы комбинаторики.Пусть имеется n различных объектов. Будем выбирать из них m объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из n объектов по m, а их число равно

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Сочетания.Пусть имеется n различных объектов. Будем выбирать из них m объектов все возможными способами (то есть меняется состав выбранных объектов, но порядок не важен). Получившиеся комбинации называются сочетаниями из n объектов по m, а их число равно

Основные правила комбинаторики. Перестановки. Размещения. Сочетания - student2.ru

Наши рекомендации