Лекция 3. Математическая модель. Классификация математических моделей. Входные и выходные параметры моделей

Среди моделей-спецификаций различают функциональные, поведенческие, информационные, структурные модели (описания). Эти модели называют математическими, если они формализованы средствами аппарата и языка математики.

В свою очередь, математические модели могут быть геометрическими, топологическими, динамическими, логическими и т.п., если они отражают соответствующие свойства объектов. Наряду с математическими моделями при проектировании используют функциональные модели, информационные модели, геометрические модели.

Математическая функциональная модель в общем случае представляет собой алгоритм вычисления вектора выходных параметров Yпри заданных векторах параметров элементов Xи внешних параметров Q.

Математические модели могут быть символическими и численными. При использовании символических моделей оперируют не значениями величин, а их символическими обозначениями (идентификаторами). Численныемодели могут быть аналитическими, т.е. их можно представить в виде явно выраженных зависимостей выходных параметров Yот параметров внутренних Xи внешних Q, или алгоритмическими, в которых связь Y, Xи Qзадана неявно в виде алгоритма моделирования. Важнейший частный случай алгоритмических моделей - имитационные, они отображают процессы в системе при наличии внешних воздействий на систему. Другими словами, имитационная модель - это алгоритмическая поведенческая модель.

Классификацию математических моделей выполняют также по ряду других признаков. Так, в зависимости от принадлежности к тому или иному иерархическому уровню выделяют модели уровней системного, функционально-логического, макроуровня (сосредоточенного) и микроуровня (распределенного).

По характеру используемого для описания математического аппарата различают модели лингвистические, теоретико-множественные, абстрактно-алгебраические, нечеткие, автоматные и т.п.

Например, на системном уровне преимущественно применяют модели систем массового обслуживания и сети Петри, на функционально-логическом уровне - автоматные модели на основе аппарата передаточных функций или конечных автоматов, на макроуровне - системы алгебро-дифференциальных уравнений, на микроуровне - дифференциальные уравнения в частных производных. Особое место занимают геометрические модели, используемые в системах конструирования.

Кроме того, введены понятия полных моделей и макромоделей, моделей статических и динамических, детерминированных и стохастических, аналоговых и дискретных, символических и численных.

Полная модель объекта в отличие от макромодели описывает не только процессы на внешних выводах моделируемого объекта, но и внутренние для объекта процессы.

Статические модели описывают статические состояния, в них не присутствует время в качестве независимой переменной. Динамические модели отражают поведение системы, т.е. в них обязательно используется время.

Стохастические и детерминированные модели различаются в зависимости от учета или неучета случайных факторов.

В аналоговых моделях фазовые переменные - непрерывные величины, в дискретных - дискретные, в частном случае дискретные модели являются логическими (булевыми), в них состояние системы и ее элементов описывается булевыми величинами. В ряде случаев полезно применение смешанных моделей, в которых одна часть подсистем характеризуется аналоговыми моделями, другая — логическими.

Информационные модели относятся к информационной страте автоматизированных систем, их используют прежде всего при инфологическом проектировании баз данных (БД) для описания связей между единицами информации.

Обычно в имитационных моделях фигурируют фазовые переменные. Так, на макроуровне имитационные модели представляют собой системы алгебро-дифференциальных уравнений:

Ф(dV/dt, V, t) = 0, при t = 0 V = V0, (1.1)

где V- вектор фазовых переменных; t- время; V0- вектор начальных условий. К примерам фазовых переменных можно отнести токи и напряжения в электрических системах, силы и скорости - в механических, давления и расходы - в гидравлических.

Выходные параметры систем могут быть двух типов. Во-первых, это параметры-функционалы, т.е. функционалы зависимостей V(t) в случае использования (1.1). Примеры таких параметров: амплитуды сигналов, временные задержки, мощности рассеивания и т.п. Во-вторых, это параметры, характеризующие способность проектируемого объекта работать при определенных внешних условиях. Эти выходные параметры являются граничными значениями диапазонов внешних переменных, в которых сохраняется работоспособность объекта.

Создать проект объекта (изделия или процесса) означает выбрать структуру объекта, определить значения всех его параметров и представить результаты в установленной форме. Результаты (проектная документация) могут быть выражены в виде чертежей, схем, пояснительных записок, программ для программно-управляемого технологического оборудования и других документов на бумаге или на машинных носителях информации.

Контрольные вопросы

1. Что такое квазиобъект?

2. Какими могут быть математические модели?

3. По каким признакам классифицируют математические модели?

4. Какие модели называют статическими, а какие динамическими?

5. В чём отличие стохатических моделей от детерминированных?

6. В чём отличие аналоговых моделей от дискретных?

Наши рекомендации