Раздел. Комплексные числа. Алгебра многочленов.
47. Комплексное число, его изображение на плоскости. Комплексно-сопряжённое число. Модуль и аргумент комплексного числа. Различные формы записи комплексного числа (алгебраическая, тригонометрическая, показательная). Формула Эйлера.
48. Действия над комплексными числами (сложение, вычитание, умножение, деление) в алгебраической, тригонометрической и показательной формах.
49. Возведение комплексного числа в степень. Формула Муавра. Извлечение корня из комплексного числа.
50. Понятие многочлена, алгебраического уравнения. Основная теорема алгебры и теорема Безу. Разложение многочлена на множители. Нахождение корней квадратного уравнения.
Приложения.
6.1. Образец решения контрольных задач типового варианта.
1 – 10.Вычислить определитель:
а)непосредственным разложением по строке;
б)непосредственным разложением по столбцу;
Решение. а)вычисляем определитель разложением по элементам первой строки: = .
Тогда = =
б)вычисляем определитель непосредственным разложением по элементам
второго столбца: = .
Тогда = = .
Ответ: .
11-20.Найти матрицу ,если:
, .
Решение:
1)Транспонируем матрицу : .
2)Вычисляем произведение матриц :
.
3)Находим матрицу :
.
4)Находим матрицу :
.
Ответ: .
21 – 30. Дана система уравнений: . Требуется:
а) найти решение системы методом Крамера; б) записать систему в матричном виде и найти её решение методом обратной матрицы; в) найти решение системы методом Гаусса.
Решение.
А) Метод Крамера.
1а)Вычисляем определитель системы и проверяем, что он отличен от нуля:
.
2а) Так как , то система имеет единственное решение, определяемое формулами Крамера:
3а) Вычисляем определители :
,
,
.
4а) Находим решение: .
5а) Выполняем проверку: .
Ответ: .
Б) Метод обратной матрицы.
1б)Записываем систему уравнений в матричном виде:
или
2б)Вычисляем определитель системы и проверяем, что он отличен от нуля:
3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой:
или
4б)Находим обратную матрицу (методом присоединённой матрицы):
.
Тогда .
5б)Находим решение:
.
6б) Выполняем проверку: .
Ответ: .
В) Метод Гаусса.
1в)Записываем расширенную матрицу системы:
.
2в)Выполняем прямой ход метода Гаусса.
В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений.
.В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход.
Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.
3в)Выполняем обратный ход метода Гаусса.
Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: .
4в) Выполняем проверку: .
Ответ: .
31-40.Найти общее решение для каждой из данных систем методом Гаусса:
а) .
Решение.
1а)Записываем расширенную матрицу системы:
.
2а)Выполняем прямой ход метода Гаусса.
.
Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и .
3а)Выполняем обратный ход метода Гаусса.
Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: .
Тогда общее решение системы запишется в виде: .
4а) Выполняем проверку:
.
Ответ: .
б) .
Решение.
1а)Записываем расширенную матрицу системы:
.
2а)Выполняем прямой ход метода Гаусса.
В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами .
Если, при выполнении преобразования расширенной матрицы , в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.
Для выполнения условия может потребоваться перестановка местами столбцов матрицы системы. Если при выполнении преобразований прямого хода в матрице системы переставлялись местами столбцы коэффициентов при неизвестных, то в дальнейшем, при записи системы уравнений, соответствующей последней расширенной матрице прямого хода, это следует учесть.
.
Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы, с учётом перестановки местами столбцов, образуют первый и второй столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и .
3б)Выполняем обратный ход метода Гаусса.
Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: .
Тогда общее решение системы запишется в виде:
4б) Выполняем проверку:
Ответ: .
в) .
Решение.
1в)Записываем расширенную матрицу системы:
.
2в)Выполняем прямой ход метода Гаусса.
.
При выполнении преобразования расширенной матрицы , в преобразованной матрице появилась строка , соответствующая уравнению , которому не удовлетворяет ни один набор значений неизвестных , что говорит о несовместности исходной системы уравнений.
Ответ: Система несовместна.
41 – 50.Требуется:
а)найтисобственные числа и векторы матрицы .
Множество собственных чисел матрицы совпадает с множеством корней характеристического уравнения матрицы : , а множество собственных векторов, отвечающих собственному числу , совпадает с множеством ненулевых решений матричного уравнения: , определяемым методом Гаусса.
Решение:
1) Составляем характеристическое уравнение матрицы :
.
Записываем его в виде алгебраического уравнения и находим действительные корни (среди них могут быть и кратные):
, .
Таким образом, собственными числами матрицы являются: и .
2)Находим собственные векторы матрицы , отвечающие различным собственным числам и .
2.1)Составляем матричное уравнениедля нахождения собственных векторов , отвечающих собственному числу :
или
,
записываем его в виде системы линейных уравнений: и решаем методом Гаусса. Полученная система, очевидно, эквивалентна системе , имеющей специальный (трапециевидный) вид. Такая система имеет бесконечно много решений, которые записывают в виде общего решения. Для записи общего решения этой системы указываем её базисные и свободные неизвестные. Базисными являются неизвестные, столбцы коэффициентов системы при которых образуют базисный минор матрицы этой системы. Такой минор образует, например, столбец коэффициентов при неизвестной : . Поэтому выбираем в качестве базисной – неизвестную , тогда свободными будут неизвестные и . Свободным неизвестным придаём разные, произвольные постоянные значения: , , где , , одновременно, и выражаем через них значение базисной неизвестной из уравнения системы: . Тогда общее решение системы, задающее множество всех собственных векторов , отвечающих собственному числу будет иметь вид: .
2.2)Составляем матричное уравнениедля нахождения собственных векторов , отвечающих собственному числу :
или
,
записываем его в виде системы линейных уравнений: и решаем методом Гаусса. Полученная система, очевидно, эквивалентна системе , имеющей специальный (трапециевидный) вид. Система имеет бесконечно много решений. Для записи её общего решения указываем базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободной будет неизвестная . Свободной неизвестной придаём произвольное постоянное значение: , где и выражаем через неё значения базисных неизвестных и из уравнений системы специального (трапециевидного) вида, начиная с последнего уравнения: . Тогда общее решение системы, задающее множество всех собственных векторов , отвечающих собственному числу , будет иметь вид: , .
Ответ: , , , ;
, , .
б)исследовать квадратичную форму на знакоопределённость (по критерию Сильвестра).
Решение.
1)Записываем матрицу квадратичной формы: .
2) Проверяем является ли матрица невырожденной. Для этого вычисляем её определитель и проверяем, равен ли он нулю: . Так как , то матрица - невырожденная и, следовательно, для исследования квадратичной формы на знакоопределённость можно применить критерий Сильвестра.
3)Вычисляем угловые миноры матрицы и делаем вывод о знакоопределённости квадратичной формы: , , . Так как выполняется условие: , , , то по критерию Сильвестра квадратичная форма положительно определена.
Ответ: Квадратичная форма положительно определена.
51 – 60.Даны векторы : ; ; ; . Показать, что векторы образуют базис и найти координаты вектора в этом базисе.
Решение.
1)Покажем, что векторы образуют базис .Для этого составим определитель, столбцами которого являются координаты этих векторов и покажем, что он отличен от нуля.
.
Так как , то векторы образуют базиси, следовательно, вектор единственным образом можно разложить по векторам этого базиса.
2)Записываем разложение вектора по векторам базиса :
или .
Коэффициенты разложения , , называют координатами вектора в базисе и записывают: .
3)Записываем векторное уравнение относительно , , в виде эквивалентной ему системы линейных уравнений: , и находим
единственное решение системы, например, по формулам Крамера:
, где
, , , .
Таким образом: , , . Следовательно, разложение имеет вид: или кратко: .
Ответ: .
61 – 70.Даны векторы : , , . Требуется: а)найти векторы и ; б)вычислить скалярное произведение ;в)найти проекцию вектора на направление вектора ; г) найти векторное произведение и его модуль .
Решение.
a)Находимвекторы и :
= ;
= .
б)Вычисляем скалярное произведениевекторов :
.
в)Находим проекцию вектора на направление вектора :
.
г)Находим векторное произведение векторов :
и вычисляем его модуль: = .
Ответ: а) = ; = ; б) ;в) ; г) , .
71-80.Даны вершины треугольника : , , Требуется найти:
а)длину стороны ; б)уравнение стороны ;
в)уравнение медианы , проведённой из вершины ;
г)уравнение высоты , проведённой из вершины ;
д)длину высоты ; е)площадь треугольника .Сделать чертёж.
Решение.Сделаем чертёж:
а)Длинустороны находим как длину вектора :
,
.
б) Уравнение стороны находим как уравнение прямой, проходящей через точки и , и записываем его в виде общего уравнения прямой:
.
в)Уравнение медианы находим как уравнение прямой, проходящей через точки и , и записываем его в виде общего уравнения прямой. Неизвестные координаты точки находим как координаты точки, делящей сторону пополам:
; .
Тогда:
.
г)Уравнение высоты находим как уравнение прямой, проходящей через точку перпендикулярно вектору , который принимаем за нормальный вектор прямой . Тогда
д)Длину высоты находим как расстояние от точки до прямой , заданной общим уравнением :
.
е)Площадь треугольника находим по формуле: . Откуда .
Ответ: а)