Поступательное движение звена
Этот вид движения чаще всего относится к ползунам, движущимся относительно прямолинейных направляющих (рис. 5.1). Пусть при этом –это масса ползуна, – его ускорение.
Сила инерции элементарной массы звена . Если просуммировать все элементарные силы инерции данного ползуна, т. е. найти сумму , то получится главный вектор сил инерции звена, равный . То есть главный вектор сил инерции, или просто сила инерции звена в его поступательном движении равна массе звена, помноженной на его ускорение. Знак «минус» в правой части формулы указывает на противоположность направления силы инерции по отношению к ускорению.
Вращательное движение звена
В этом движении находятся кривошипы, кулисы, коромысла и другие звенья механизмов. Возьмём стержневое звено ОА (рис. 5.2), вращающееся вокруг неподвижной точки О.
Масса звена равна , момент инерции относительно центра масс S равен . Вращение происходит с угловой скоростью и угловым ускорением . Расстояние между центром масс и центром вращения равно .
Вычислим ускорение, с которым движется центр масс S. Его нормальное ускорение равно , тангенциальное ускорение равно . Так как эти составляющие полного ускорения перпендикулярны друг другу, то полное ускорение равно . В результате наличия этого ускорения возникает сила инерции, приложенная в центре масс, направленная противоположно ускорению центра масс
.
Угловое ускорение звена вызывает появление инерционного момента (или момента сил инерции), направленного по отношению к нему в противоположную сторону
.
В этой формуле момент инерции принимается относительно центра вращения и определяется формулой .
Частные случаи
1. . 2. .
3. .
Плоско-параллельное движение звена
Такое движение совершают чаще всего шатуны механизмов. На рис. 5.3 изображён шатун, совершающий такое движение. Масса шатуна равна , момент инерции относительно центра масс равен .
Звено движется, имея угловое ускорение и ускорение центра масс . Аналогично вращательному движению в этом случае также будут действовать оба инерционных фактора: сила инерции , противоположная ускорению, и момент сил инерции , противоположный угловому ускорению.
Общие положения силового расчёта
Принцип Даламбера
Силовой расчёт механизмов выполняется на основе принципа Даламбера, позволяющего рассматривать подвижные системы, к которым относятся механизмы, как неподвижные, находящиеся в равновесии. Принцип Даламбера можно сформулировать так: если к системе сил, действующих на подвижную систему, добавить силы инерции, то такую систему можно рассматривать как находящуюся в равновесии, и к ней применимы законы статики.
Принцип освобождаемости
Если рассматривать механизм в целом, то имеющаяся в каждой кинематической паре, согласно принципу равенства действия и противодействия, пара сил (реакций), действующих по одной линии действия и равных по величине, уравновешивается и на равновесие механизма в целом не влияет. Так что даже в простом механизме определить эти реакции невозможно – они не войдут в уравнения равновесия. Для определения реакций необходимо механизм расчленить на части, каждая из которых была бы статически определима и в которой неизвестные реакции входили бы в число внешних сил и в уравнения равновесия.