Файловые структуры, используемые для хранения информации в базах данных
В каждой СУБД по-разному организованы хранение и доступ к данным, однако существуют некоторые файловые структуры, которые имеют общепринятые способы организации и широко применяются практически во всех СУБД.
В системах баз данных файлы и файловые структуры, которые используются для хранения информации во внешней памяти, можно классифицировать следующим образом (см. рис. 9.1).
Рис. 9.1. Классификация файлов, используемых в системах баз данных
С точки зрения пользователя, файлом называется поименованная линейная последовательность записей, расположенных на внешних носителях. На рис. 9.2 представлена такая условная последовательность записей.
Так как файл — это линейная последовательность записей, то всегда в файле можно определить текущую запись, предшествующую ей и следующую за ней. Всегда существует понятие первой и последней записи файла. Не будем вдаваться в особенности физической организации внешней памяти, выделим в ней те черты, которые существенны для рассмотрения нашей темы.
В соответствии с методами управления доступом различают устройства внешней памяти с произвольной адресацией (магнитные и оптические диски) и устройства с последовательной адресацией (магнитофоны, стримеры).
На устройствах с произвольной адресацией теоретически возможна установка головок чтения-записи в произвольное место мгновенно. Практически существует время позиционирования головки, которое весьма мало по сравнению со временем считывания-записи.
В устройствах с последовательным доступом для получения доступа к некоторому элементу требуется «перемотать (пройти)» все предшествующие ему элементы информации. На устройствах с последовательным доступом вся память рассматривается как линейная последовательность информационных элементов (см. рис. 9.3).
Рис. 9.2. Файл как линейная последовательность записей
Рис. 9.3. Модель хранения информации на устройстве последовательного доступа
Файлы с постоянной длиной записи, расположенные на устройствах прямого доступа (УПД), являются файлами прямого доступа.
В этих файлах физический адрес расположения нужной записи может быть вычислен по номеру записи (NZ).
Каждая файловая система СУФ — система управления файлами поддерживает некоторую иерархическую файловую структуру, включающую чаще всего неограниченное количество уровней иерархии в представлении внешней памяти (см. рис. 9.4).
Для каждого файла в системе хранится следующая информация:
- имя файла;
- тип файла (например, расширение или другие характеристики);
- размер записи;
- количество занятых физических блоков;
- базовый начальный адрес;
- ссылка на сегмент расширения;
- способ доступа (код защиты).
Рис. 9.4. Иерархическая организация файловой структуры хранения
Для файлов с постоянной длиной записи адрес размещения записи с номером К может быть вычислен по формуле:
ВА + (К - 1) * LZ + 1,
где ВА — базовый адрес, LZ — длина записи.
И как мы уже говорили ранее, если можно всегда определить адрес, на который необходимо позиционировать механизм считывания-записи, то устройства прямого доступа делают это практически мгновенно, поэтому для таких файлов чтение произвольной записи практически не зависит от ее номера. Файлы прямого доступа обеспечивают наиболее быстрый доступ к произвольным записям, и их использование считается наиболее перспективным в системах баз данных.
На устройствах последовательного доступа могут быть организованы файлы только последовательного доступа.
Файлы с переменной длиной записи всегда являются файлами последовательного доступа. Они могут быть организованы двумя способами:
- Конец записи отличается специальным маркером.
Запись 1 | X | Запись 2 | X | ЗаписьЗ | X | ||
- В начале каждой записи записывается ее длина.
LZ1 | Запись! | LZ2 | Запись2 | LZ3 | ЗаписьЗ | ||
Здесь LZN — длина N-й записи.
Файлы с прямым доступом обеспечивают наиболее быстрый способ доступа. Мы не всегда можем хранить информацию в виде файлов прямого доступа, но главное — это то, что доступ по номеру записи в базах данных весьма неэффективен. Чаще всего в базах данных необходим поиск по первичному или возможному ключам, иногда необходима выборка по внешним ключам, но во всех этих случаях мы знаем значение ключа, но не знаем номера записи, который соответствует этому ключу.
При организации файлов прямого доступа в некоторых очень редких случаях возможно построение функции, которая по значению ключа однозначно вычисляет адрес (номер записи файла).
NZ = F(K),
где NZ — номер записи, К — значение ключа, F( ) — функция.
Функция F() при этом должна быть линейной, чтобы обеспечивать однозначное соответствие (см. рис. 9.5).
Рис. 9.5. Пример линейной функции пересчета значения ключа в номер записи
Однако далеко не всегда удастся построить взаимно-однозначное соответствие между значениями ключа и номерами записей.
Часто бывает, что значения ключей разбросаны по нескольким диапазонам (см. рис. 9.6).
Рис. 9.6. Допустимые значения ключа
В этом случае не удается построить взаимнооднозначную функцию, либо эта функция будет иметь множество незадействованных значений, которые соответствуют недопустимым значениям ключа. В подобных случаях применяют различные методы хэширования (рандомизации) и создают специальные хэш- функции.
Суть методов хэширования состоит в том, что мы берем значения ключа ( или некоторые его характеристики) и используем его для начала поиска, то есть мы вычисляем некоторую хэш-функцию h(k) и полученное значение берем в качестве адреса начала поиска. То есть мы не требуем полного взаимно-однозначного соответствия, но, с другой стороны, для повышения скорости мы ограничиваем время этого поиска (количество дополнительных шагов) для окончательного получения адреса. Таким образом, мы допускаем, что нескольким разным ключам может соответствовать одно значение хэш-функции (то есть один адрес). Подобные ситуации называются коллизиями. Значения ключей, которые имеют одно и то же значение хэш-функции, называются синонимами.
Поэтому при использовании хэширования как метода доступа необходимо принять два независимых решения:
- выбрать хэш-функцию;
- выбрать метод разрешения коллизий.
Существует множество различных стратегий разрешения коллизий, но мы для примера рассмотрим две достаточно распространенные.
Стратегия разрешения коллизий с областью переполнения
Первая стратегия условно может быть названа стратегией с областью переполнения. При выборе этой стратегии область хранения разбивается на 2 части:
- основную область;
- область переполнения.
Для каждой новой записи вычисляется значение хэш-функции, которое определяет адрес ее расположения, и запись заносится в основную область в соответствии с полученным значением хэш-функции.
Основная область:
Если вновь заносимая запись имеет значение функции хэширования такое же, которое использовала другая запись, уже имеющаяся в БД, то новая запись заносится в область переполнения на первое свободное место, а в записи-синониме, которая находится в основной области, делается ссылка на адрес вновь размещенной записи в области переполнения. Если же уже существует ссылка в записи-синониме, которая расположена в основной области, то тогда новая запись получает дополнительную информацию в виде ссылки и уже в таком виде заносится в область переполнения.
При этом цепочка синонимов не разрывается, но мы не просматриваем ее до конца, чтобы расположить новую запись в конце цепочки синонимов, а располагаем всегда новую запись на второе место в цепочке синонимов, что существенно сокращает время размещения новой записи. При таком алгоритме время раз"-мещения любой новой записи составляет не более двух обращений к диску, с учетом того, что номер первой свободной записи в области переполнения хранится в виде системной переменной.
Рассмотрим теперь механизмы поиска произвольной записи и удаления записи для этой стратегии хэширования.
При поиске записи также сначала вычисляется значение ее хэш-функции и считывается первая запись в цепочке синонимов, которая расположена в основной области. Если искомая запись не соответствует первой в цепочке синонимов, то далее поиск происходит перемещением по цепочке синонимов, пока не будет обнаружена требуемая запись. Скорость поиска зависит от длины цепочки синонимов, поэтому качество хэш-функции определяется максимальной длиной цепочки синонимов. Хорошим результатом может считаться наличие не более 10 синонимов в цепочке.
При удалении произвольной записи сначала определяется ее место расположения. Если удаляемой является первая запись в цепочке синонимов, то после удаления на ее место в основной области заносится вторая (следующая) запись в цепочке синонимов, при этом все указатели (ссылки на синонимы) сохраняются.
Если же удаляемая запись находится в середине цепочки синонимов, то необходимо провести корректировку указателей: в записи, предшествующей удаляемой, в цепочке ставится указатель из удаляемой записи. Если это последняя запись в цепочке, то все равно механизм изменения указателей такой же, то есть в предшествующую запись заносится признак отсутствия следующей записи в цепочке, который ранее хранился в последней записи.
Организация стратегии свободного замещения
При этой стратегии файловое пространство не разделяется на области, но для каждой записи добавляется 2 указателя: указатель на предыдущую запись в цепочке синонимов и указатель на следующую запись в цепочке синонимов. Отсутствие соответствующей ссылки обозначается специальным символом, например нулем. Для каждой новой записи вычисляется значение хэш-функции, и если данный адрес свободен, то запись попадает на заданное место и становится первой в цепочке синонимов. Если адрес, соответствующий полученному значению хэш-функции, занят, то по наличию ссылок определяется, является ли запись, расположенная по указанному адресу, первой в цепочке синонимов. Если да, то новая запись располагается на первом свободном месте и для нее устанавливаются соответствующие ссылки: она становится второй в цепочке синонимов, на нее ссылается первая запись, а она ссылается на следующую, если таковая есть. Если запись, которая занимает требуемое место, не является первой записью в цепочке синонимов, значит, она занимает данное место «незаконно» и при появлении «законного владельца» должна быть «выселена», то есть перемещена на новое место. Механизм перемещения аналогичен занесению новой записи, которая уже имеет синоним, занесенный в файл. Для этой записи ищется первое свободное место и корректируются соответствующие ссылки: в записи, которая является предыдущей в цепочке синонимов для перемещаемой записи, заносится указатель на новое место перемещаемой записи, указатели же в самой перемещаемой записи остаются прежние.
После перемещения «незаконной» записи вновь вносимая запись занимает свое законное место и становится первой записью в новой цепочке синонимов. Механизмы удаления записей во многом аналогичны механизмам удаления в стратегии с областью переполнения. Однако еще раз кратко опишем их. Если удаляемая запись является первой записью в цепочке синонимов, то после удаления на ее место перемещается следующая (вторая) запись из цепочки синонимов и проводится соответствующая корректировка указателя третьей записи в цепочке синонимов, если таковая существует.
Если же удаляется запись, которая находится в середине цепочки синонимов, то производится только корректировка указателей: в предшествующей записи указатель на удаляемую запись заменяется указателем на следующую за удаляемой запись, а в записи, следующей за удаляемой, указатель на предыдущую запись заменяется на указатель на запись, предшествующую удаляемой.
Индексные файлы
Несмотря на высокую эффективность хэш-адресации, в файловых структурах далеко не всегда удается найти соответствующую функцию, поэтому при организации доступа по первичному ключу широко используются индексные файлы. В некоторых коммерческих системах индексными файлами называются также и файлы, организованные в виде инвертированных списков, которые используются для доступа по вторичному ключу. Мы будем придерживаться классической интерпретации индексных файлов и надеемся, что если вы столкнетесь с иной интерпретацией, то сумеете разобраться в сути, несмотря на некоторую путаницу в терминологии. Наверное, это отчасти связано с тем, что область баз данных является достаточно молодой областью знаний, и несмотря на то, что здесь уже выработалась определенная терминология, многие поставщики коммерческих СУБД предпочитают свой упрощенный сленг при описании собственных продуктов. Иногда это связано с тем, что в целях рекламы они не хотят ссылаться на старые, хорошо известные модели и методы организации информации в системе, а изобретают новые названия при описании своих моделей, тем самым пытаясь разрекламировать эффективность своих продуктов. Хорошее знание принципов организации данных поможет вам объективно оценивать решения, предлагаемые поставщиками современных СУБД, и не попадаться на рекламные крючки.
Индексные файлы можно представить как файлы, состоящие из двух частей. Это не обязательно физическое совмещение этих двух частей в одном файле, в большинстве случаев индексная область образует отдельный индексный файл, а основная область образует файл, для которого создается индекс. Но нам удобнее рассматривать эти две части совместно, так как именно взаимодействие этих частей и определяет использование механизма индексации для ускорения доступа к записям.
Мы предполагаем, что сначала идет индексная область, которая занимает некоторое целое число блоков, а затем идет основная область, в которой последовательно расположены все записи файла.
В зависимости от организации индексной и основной областей различают 2 типа файлов: с плотным индексом и с неплотным индексом. Эти файлы имеют еще дополнительные названия, которые напрямую связаны с методами доступа к произвольной записи, которые поддерживаются данными файловыми структурами.
Файлы с плотным индексом называются также индексно-прямыми файлами, а файлы с неплотным индексом называются также иидексно-последовательными файлами. Смысл этих названий нам будет ясен после того, как мы более подробно рассмотрим механизмы организации данных файлов.