Скорость движения и угол атаки элемента лопасти винта
К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.
Углом атаки элементов лопасти винта a называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 66).
Рис. 66 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости элемента лопасти
Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна
(3.4)
где nс - обороты двигателя.
Поступательная скорость-это скорость самолета V. Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U.
При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.
Рассматривая Рис. 66, а, нетрудно заметить, что:
когда воздушный винт вращается, а поступательная скорость равна нулю (V=0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти j;
при поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его);
угол атаки будет тем больше, чем больше угол установки элемента лопасти винта;
результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника
(3.5)
чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.
В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v, которую называют скоростью подсасывания. В результате истинная скорость W' будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки a' будет отличаться от угла a (Рис. 66, б).
Анализируя вышесказанное, можно сделать выводы:
при поступательной скорости V=0 угол атаки максимальный и равен углу установки лопасти винта;
при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла установки;
при большой скорости полета угол атаки лопастей может стать отрицательным;
чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;
если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается и может стать отрицательным.
Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.
Сила тяги винта возникает в результате действия аэродинамической силы DR на элемент лопасти винта при его вращении (Рис. 67).
Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению DХ элемента лопасти винта.
Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р.
Тяга винта зависит от диаметра винта Д, числа оборотов в секунду n, плотности воздуха r и подсчитывается по формуле (в кгс или Н)
(3.6)
где a - коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-52 и Як-55 В530ТА-Д35 равен 1,3.
Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.
Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.
Сила сопротивления вращению определяется по формуле
(3.7)
где Схл -коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;
W - результирующая скорость, м/с;
Sл - площадь лопасти;
К- количество лопастей.
Рис. 67 Аэродинамические силы воздушного винта
Рис. 68. Режимы работы воздушного винта
Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:
Мтр=Хвrв (3.8)
Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле
(3.9)
где Ne-эффективная мощность двигателя.
Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. 68, а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X=R. Это режим нулевой тяги (Рис. 68, б).
При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или авторотацией (Рис. 68, в).
При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. 68, г).
Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.
На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.