Оценка дисперсии, среднеквадратичное отклонение.

Оценка дисперсии (S2) и среднеквадратичного отклонения (S) производится по формулам:

Выборочная дисперсия (S2) определяется по формуле:

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru

Где:

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru - объем выборки;

mi – частота встречаемости значения признака хi;

Хi -случайные (текущие) величины;

–среднее значение случайных величин по выборке, рассчитывается по формуле:

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru

Итак, дисперсия - это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности.

Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, мы просто рассчитываем среднюю арифметическую.

Разгадка магического слова «дисперсия» заключается всего в этих трех словах: средний – квадрат – отклонений.

Среднее квадратичное отклонение (СКО)

Извлекая из дисперсии квадратный корень, получаем, так называемое «среднеквадратичное отклонение». Встречаются названия «стандартное отклонение» или «сигма» (от названия греческой буквыσ.). Формула среднего квадратичного отклонения имеет вид:

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru .

Итак, дисперсия – это сигма в квадрате, или – среднее квадратичное отклонение в квадрате.

Среднеквадратичное отклонение, очевидно, также характеризует меру рассеивания данных, но теперь (в отличие от дисперсии) его можно сравнивать с исходными данными, так как единицы измерения у них одинаковые (это явствует из формулы расчета). Размах вариации – это разница между крайними значениями. Среднеквадратичное отклонение, как мера неопределенности, также участвует во многих статистических расчетах. С ее помощью устанавливают степень точности различных оценок и прогнозов. Если вариация очень большая, то стандартное отклонение тоже получится большим, следовательно, и прогноз будет неточным, что выразится, к примеру, в очень широких доверительных интервалах.

Поэтому в методах статистической обработки данных в оценках объектов недвижимости в зависимости от необходимой точности поставленной задачи используют правило двух или трех сигм.

Для сравнения правила двух сигм и правила трех сигм используем формулу Лапласа:

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru Ф Оценка дисперсии, среднеквадратичное отклонение. - student2.ru — Ф Оценка дисперсии, среднеквадратичное отклонение. - student2.ru ,

где Ф(x) – функция Лапласа;

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru = минимальное значение

β = максимальное значение

s = значение сигмы (среднее квадратичное отклонение)

a = среднее значение

 
В этом случае используется частный вид формулы Лапласа когда границы α и β значений случайной величины X равно отстоят от центра распределения a = M(X) на некоторую величину d: a = a-d, b = a+d. Оценка дисперсии, среднеквадратичное отклонение. - student2.ru Оценка дисперсии, среднеквадратичное отклонение. - student2.ru Или Оценка дисперсии, среднеквадратичное отклонение. - student2.ru Оценка дисперсии, среднеквадратичное отклонение. - student2.ru (1) Формула (1) определяет вероятность заданного отклонения d случайной величины X с нормальным законом распределения от ее математического ожидания М(X) = a. Если в формуле (1) принять последовательно d = 2s и d = 3s, то получим: Оценка дисперсии, среднеквадратичное отклонение. - student2.ru (2), Оценка дисперсии, среднеквадратичное отклонение. - student2.ru (3).
 
 

Правило двух сигм

Почти достоверно (с доверительной вероятностью 0,954) можно утверждать, что все значения случайной величины X с нормальным законом распределения отклоняются от ее математического ожидания M(X) = a на величину, не большую 2s (двух средних квадратических отклонений). Доверительной вероятностью (Pд) называют вероятность событий, которые условно принимаются за достоверные (их вероятность близка к 1).

Проиллюстрируем правило двух сигм геометрически. На рис. 6 изображена кривая Гаусса с центром распределения а. Площадь, ограниченная всей кривой и осью Оx, равна 1 (100%), а площадь криволинейной трапеции между абсциссами а–2s и а+2s, согласно правилу двух сигм, равна 0,954 (95,4% от всей площади). Площадь заштрихованных участков равна 1-0,954 = 0,046 (»5% от всей площади). Эти участки называют критической областью значений случайной величины. Значения случайной величины, попадающие в критическую область, маловероятны и на практике условно принимаются за невозможные.

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru

Вероятность условно невозможных значений называют уровнем значимости случайной величины. Уровень значимости связан с доверительной вероятностью формулой:

Оценка дисперсии, среднеквадратичное отклонение. - student2.ru = 1- Оценка дисперсии, среднеквадратичное отклонение. - student2.ru ,

где q – уровень значимости, выраженный в процентах.

Правило трех сигм

При решении вопросов, требующих большей надежности, когда доверительную вероятность (Pд) принимают равной 0,997 (точнее - 0,9973), вместо правила двух сигм, согласно формуле (3), используют правило трех сигм.

Согласно правилу трех сигм при доверительной вероятности 0,9973 критической областью будет область значений признака вне интервала (а-3s, а+3s). Уровень значимости составляет 0,27%.

Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027=1-0,9973. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий, можно считать практически невозможными. Т.е. выборка высокоточная.

В этом и состоит сущность правила трех сигм:

Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения (СКО).

На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

Уровень значимости принимают в зависимости от дозволенной степени риска и поставленной задачи. Для оценки недвижимости обычно принимается менее точная выборка, следуя правилу двух сигм.

Наши рекомендации