Учитель математики МБОУ СОШ №3

Г. Горячий Ключ.

РАБОЧАЯ ПРОГРАММА «АЛГЕБРА»

Й классы

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике:

- Федерального Государственного Образовательного Стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2014 года №1897);

- Норм Федерального Закона «Об образовании в Российской Федерации» «273-ФЗ от 29 декабря 2012 года;

- Основной Образовательной программы основного общего образования МБОУ СОШ № 3, утвержденной педагогическим советом, протокол №1 от 29.08.2015г.;

- Сборника нормативных документов. Математика / Программа подготовлена институтом стратегических исследований в образовании РАО. Научные руководители — член-корреспондент РАОА. М. Кондаков, академик РАО Л. П. Кезина, Составитель — Е. С. Савинов./ М.: «Просвещение», 2012;

- Примерной программы по курсу алгебры (7 – 9 классы), созданной на основе единой концепции преподавания математики в средней школе, разработанной А.Г.Мерзляком, В.Б.Полонским, М.С.Якиром, Д.А. Номировским, включенных в систему «Алгоримт успеха» (М.: Вентана-Граф, 2014) и обеспечена УМК для 7-9-го классов «Алгебра – 7», «Алгебра – 8» и «Алгебра – 9»/ А.Г.Мерзляк, В.Б.Полонский, М.С.Якир/М.: Вентана-Граф, 2014.

В данных документах учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основ­ного общего образования. Сознательное овладение учащимися системой алгебраиче­ских знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса алгебры обу­словлена тем, что её объектом являются количественные отно­шения действительного мира. Математическая подготовка не­обходима для понимания принципов устройства и использова­ния современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В пер­вую очередь это относится к предметам естественно – научного цикла, в частности к физике, информатике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению пред­метов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профес­сиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении ре­ального и идеального, характере отражения математической на­укой явлений и процессов реального мира, месте алгебры в си­стеме наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концен­трации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целе­устремленность, творческую активность, самостоятельность, от­ветственность, трудолюбие, дисциплину и критичность мышле­ния) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики су­щественно расширяет кругозор учащихся, знакомя их с индук­цией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагировани­ем, аналогией. Активное использование задач на всех этапах учебного 7 развивает творческие способности школьни­ков.

Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск раци­ональных путей её выполнения, критическая оценка результа­тов. В процессе изучения алгебры школьники должны научить­ся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является раз­витие логического мышления учащихся. Сами объекты матема­тических умозаключений и принятые в алгебре правила их кон­струирования способствуют формированию умений обосновы­вать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрыва­ют механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формиро­вании научно-теоретического мышления школьников. Раскры­вая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вно­сит значительный вклад в эстетическое воспитание учащихся.

I. Пояснительная записка

Курс алгебры 7 – 9 классов является базовым для математического образования и развития школьников. Алгеброические знания необходимы для изучения геометрии в 7 – 9 классах, алгебры и математического анализа в 10 – 11 классах, а также изучения смежных дисциплин. При этом учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции – умения учиться.

В основу настоящей программы положено Фундаментальное ядро содержания общего образования, требования к результатам освоения образовательной программы основного общего образования, представленные в федеральном государственном образовательном стандарте основного общего образования, с учётом приемственности с примерными программами для начального общего образования по математике.

Практическая значимость школьного курса алгебры 7– 9 классов состоит в том, что предметом его изучения являются количественные отношения и процессы реального мира, описанные математическими моделями. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Одной из основных целей изучения алгебры является развитие мышления. В процессе изучения алгебры формируется логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обощение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию. Т

Обучение алгебре даёт возможность учащимся научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. Учащиеся, в процессе изучения алгебры, учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у школьников грамотную устную и письменную речь.

Формирует у учащихся представление об алгебре как части общечеловеческой культуры и знакомство с историей развития алгебры как науки. Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сранение, анализ, выделение главного, установление связей, классификацию, обощение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера, например решения текстовых задач, денежных и процентных расчетов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определенного типа.

В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, изложенные в концепции образовательной программы «Перспективная школа», и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.

А. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.

Б. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.

В. Деятельностно ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.

Математическое образование является обязательной и не­отъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

· Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

· Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

· Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

· Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

· Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

· Развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

· Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

· Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3) в предметном направлении:

· Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

· Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.

Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

В курсе алгебры можно выделить следующие основные со­держательные линии: арифметика; алгебра; функции; вероят­ность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализаци­ей целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачива­ется в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая ли­ния — «Логика и множества» — служит цели овладения учащи­мися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — спо­собствует созданию общекультурного, гуманитарного фона из­учения курса.

Наши рекомендации