Общее Частное Базисное решения
Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:
Частным решением системы уравнений называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.
Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.
- Базисное решение (вектор) называется вырожденным, если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
- Базисное решение называется невырожденным, если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.
Теорема (1)
Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена(имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена(имеет бесконечное множество решений).
Пример 1. Найти общее, базисное и какое-либо частное решение системы уравнений:
Решение:
1. Проверяем является ли система разрешенной?
- Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)
2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения.
- В нашем случае мы можем включить в набор разрешенных неизвестных из первого уравнения — и , а из второго уравнения только . То есть набор может состоять из ( ) или ( ).
3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор.
- допустим мы включили в набор неизвестные и , тогда общее решение будет выглядеть так:
4. Находим частное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.
- Пусть , , , тогда из общего решения находим:
Ответ: частное решение (один из вариантов)
5. Находим базисное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.
- , то из общего решения получаем , и базисное решение:
Элементарные преобразования линейных уравнений
Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.
Теорема (2)
Если какое-либо уравнение системы умножить на некоторое отличное от нуля число, а остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)
Теорема (3)
Если к какому-либо уравнению системы прибавить другое, а все остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)
Следствие из Теорем (2 и 3)
Если к какому-либо уравнению прибавить другое, умноженное на некоторое число, а все остальные уравнения оставить без изменения, то получится система, равносильная данной.