Перевод чисел из 10-й системы счисления в другую СС.
Правило. Чтобы перевести число из одной системы счисления в другую, необходимо исходное число разделить на основание новой системы счисления. Полученное частное вновь поделить на основание новой системы счисления, и выполнять деление до тех пор. пока частное не будет меньше основания новой системы счисления. Полученные остатки от деления, начиная с последнего, записываются в обратном порядке. Это и будет запись числа в новой системе счисления.
Пример. Число 135 перевести из 10-тичной СС в 2-ичную, 8-ричную и 16-ричную системы счисления.
1) | 2) | 3) | ||||||||||||||
Задание 2.
Перевести в двоичную, восьмеричную и шестнадцатеричную СС следующие числа 1275,973, 172
Обратный перевод чисел из любой СС в 10-тичную.
Правило.
1) Чтобы перевести число из любой СС в исходную СС (обратный перевод), нужно каждую цифру этого числа умножить на основание исходной СС. начиная с нулевой цифры справа налево, и произведения сложить. Если переводится десятичная дробь, следует применить правило для записи целой и дробной части числа.
2) Обратный перевод чисел осуществляется по формуле:
где A – заданное число,
g – основание СС заданного числа (=2 для 2-ичной СС, для других СС - подобно),
m – число цифр в целой части числа.
n – число цифр в дробной части числа,
a – значение цифр заданного числа(запись дробной части числа выделена синим цветом).
Пример:
1101102= 1*25+1*24+0*23+1*22+1*21+0*20=5410
668=6*81+6*80=48+6=5410 9A16=9*161+10*160=144+10=15410
13,48=1*81+3*80+4*8-1=8+3+0.5=11.510 (это число – десятичная дробь)
Задание3.
Перевести в десятичную СС следующие числа:
101,112=5,7510 10110012 1011,1012
125,78=8610 12538 175,1328
A19BA16=2585726…10 16A316 2BAFD16
Перевод чисел с основанием, являющимся степенью числа 2 и обратный перевод. К таким СС относятся двоичная, восьмеричная, шестнадцатеричная системы счисления.
Правило. Перевод из двоичной СС в восьмеричную СС. Двоичное число делится на группы по 3 цифры с конца(справа налево) и каждая группа преобразуется числом в новом СС
10.000.1012=2058
111.000.101.1002=70548
1.011.001.1012=13158
Правило. Для обратного преобразования каждая восьмеричная цифра записывается в виде триады.
Правило. Из двоичной СС в шестнадцатеричную СС: аналогично, но отделяем по 4 цифры
0110.0110.10112=66B16
1011.1111.01112=BF716
10.1010.0111.00012=2A7116
Правило. Для обратного преобразования каждая шестнадцатеричная цифра записывается в виде тетрады.
Перевод правильных и неправильных дробей в разных СС. Если нужно перевести обыкновенную дробь, то сначала ее нужно перевести в десятичную дробь, а затем применить правила перевода десятичных дробей.
Правило. Перевод десятичных дробей, меньших единицы (правильные дроби).
1) необходимо отделить вертикальной чертой дробную часть;
2) умножить дробную часть на основании новой системы счисления;
3) результат записать строго под исходным числом, начиная с младшего разряда; если получится перенос в целую часть, то записать ее слева от черты;
4) умножение дробной части проводится до тех пор пока не будет получено число с заданной точностью, либо справа от черты не будет 0.
0,72810=0,5648
Задание 4. Перевести из десятичной СС в двоичную, восьмеричную, шестнадцатеричную СС следующие правильные дроби: .