Система дискретных случайных величин.

8. Система дискретных случайных величин задана таблицей:

Найти:

1) корреляционный момент;

2) коэффициент корреляции, сделать вывод о тесноте и направлении связи между величинами Х и Y;

3) функцию линейной регрессии Y на X;

4) функцию линейной регрессии X на Y;

5) построить в одной системе координат найденные линии регрессии.

8.1. X
Y
8.2. X
Y
8.3. X
Y
8.4. X
Y
8.5. X
Y
8.6. X
Y
8.7. X
Y
8.8. X
Y
8.9. X
Y
8.10. X
Y

ГЛАВА II. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКУЮ СТАТИСТИКУ

1. Первичная обработка выборочных данных.
Группировка статистических данных

Статистическая совокупность

Для того, чтобы получить наиболее полную информацию об изучаемом явлении, необходимо анализировать результаты не отдельных наблюдений, а множества однородных наблюдений. Результаты отдельных наблюдений могут оказаться случайными, неполно выражать сущность изучаемого явления. Очевидно, что наблюдаемые объекты обладают множеством признаков; однако, поставив своей задачей изучение лишь одного признака, мы тем самым полагаем, что в отношении остальных объекты равноправны, то есть множество объектов однородно.

Некоторое множество относительно однородных объектов, объединяемых по тому или иному признаку для совместного изучения, называется статистической совокупностью. Отдельные объекты статистической совокупности называются членами совокупности.

Первичным результатом статистического исследования является простой статистический ряд. Он представляет собой перечень членов совокупности и соответствующих им значений признака.

Генеральная совокупность и выборка

Вся подлежащая изучению совокупность однородных объектов называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называется выборочной совокупностью или выборкой. Число объектов в генеральной совокупности или в выборке называют их объемами (в дальнейшем, N — объем генеральной совокупности, n — объем выборки).

Для того чтобы по данным выборки можно было достаточно уверенно судить об интересующем нас признаке генеральной совокупности, необходимо, чтобы свойства объектов выборки правильно отражали свойства объектов генеральной совокупности и структуру генеральной совокупности, т.е. выборка должна правильно представлять пропорции генеральной совокупности. Другими словами, выборка должна быть репрезентативной (представительной). Репрезентативность выборки достигается, если ее производят случайным образом (т.е. все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку).

Виды признаков

Способы обработки данных зависят от характера исследуемого признака. Признаки делятся на качественные и количественные. Отдельные значения качественного признака выражаются понятиями, наименованиями, свойствами (специальность, национальность, место работы, виды преступлений, стандартность изделия и т.п.), количественного — числами (возраст, стаж работы, размер заработной платы, количество произведенной продукции и т.п.).

Количественный признак может быть дискретным и непрерывным. Дискретный признак принимает только отдельные изолированные значения, без промежуточных значений между ними, эти значения можно пронумеровать (например, число работников предприятия). Признак, который может принимать любые значения из некоторого числового промежутка, называется непрерывным (например, время написания теста).

В дальнейшем будем использовать обозначения:

Х — изучаемый признак или случайная величина,

Система дискретных случайных величин. - student2.ru — наблюдаемые значения признака или варианты.

Группировка данных. Вариационный ряд

Следующим шагом в изучении признака является группировка— разделение членов совокупности на группы, в которых члены совокупности принимают либо одни и те же значения, либо значения внутри определенного интервала. Способы группировки зависят от вида признака.

Группировка данных качественного признака

Пример 1.При изучении уровня образования 20 сотрудников отдела выяснено, что среди них 15 человек имеют высшее образование, 5 – среднее специальное. Данные сгруппированы в таблице 1.

Таблица 1

Группировка сотрудников по уровню образования

Уровень образования высшее среднее специальное всего
Количество

Группировка данных количественного признака

Для группировки данных в случаеколичественного дискретного признака все варианты располагают в порядке возрастания и указывают частоты Система дискретных случайных величин. - student2.ru , с которыми они встречаются в данной совокупности. Частота Система дискретных случайных величин. - student2.ru варианты Система дискретных случайных величин. - student2.ru показывает, сколько раз варианта Система дискретных случайных величин. - student2.ru встречается в вариационном ряду. Дискретным вариационным рядом называется последовательность вариант Система дискретных случайных величин. - student2.ru , расположенных в порядке возрастания ( Система дискретных случайных величин. - student2.ru < Система дискретных случайных величин. - student2.ru < … < Система дискретных случайных величин. - student2.ru ), и соответствующих им частот Система дискретных случайных величин. - student2.ru (таблица 2). Отметим, что сумма всех частот вариационного ряда равна объему выборки n.

Таблица 2

Варианта Система дискретных случайных величин. - student2.ru Частота Система дискретных случайных величин. - student2.ru
Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru
Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru
Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru
  Система дискретных случайных величин. - student2.ru

Относительной частотой Система дискретных случайных величин. - student2.ru варианты Система дискретных случайных величин. - student2.ru называется отношение ее частоты Система дискретных случайных величин. - student2.ru к объему выборки n:

Система дискретных случайных величин. - student2.ru .

Графическое изображение дискретного вариационного ряда называется полигоном. Полигон частот – ломаная, отрезки которой последовательно соединяют точки с координатами Система дискретных случайных величин. - student2.ru , Система дискретных случайных величин. - student2.ru , …, Система дискретных случайных величин. - student2.ru . Можно также строить полигон относительных частот.

Пример 2. Имеются данные о стаже работы 24 сотрудников предприятия.

Минимальное значение стажа Система дискретных случайных величин. - student2.ru , максимальное Система дискретных случайных величин. - student2.ru . Подсчитав частоту каждой варианты, оформим таблицу 3.

Таблица 3

Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru
  Система дискретных случайных величин. - student2.ru

Система дискретных случайных величин. - student2.ru
Таблица 3 задает дискретный вариационный ряд. Для построения полигона частот на оси абсцисс отметим варианты, на оси ординат — соответствующие им частоты. Точки последовательно соединим отрезками. На следующем рисунке представлен полигон вариационного ряда таблицы 3.

Группировка данных в случае количественного непрерывного признака (или дискретного признака, когда число вариант велико)

В этом случае строят интервальный вариационный ряд. Интервальным вариационным рядом называется упорядоченная последовательность интервалов изменения признака вида Система дискретных случайных величин. - student2.ru и соответствующих им частот. Частотой интервала Система дискретных случайных величин. - student2.ru называется количество вариант, попавших в этот интервал. Для построения интервального вариационного ряда определяют величину (ширину) интервала, составляют шкалу интервалов и в соответствии с ней группируют результаты наблюдений. Для определения ширины интервала используют либо формулу (1), либо формулу (2).

Система дискретных случайных величин. - student2.ru , (1)

где h – ширина интервала,

Система дискретных случайных величин. - student2.ruмаксимальная варианта,

Система дискретных случайных величин. - student2.ruминимальная варианта,

k – число групп.

Формула (2) – формула Стэрджесса, позволяет определить оптимальную ширину интервала:

Система дискретных случайных величин. - student2.ru , (2)

где n — объем выборки.

Если h оказывается дробным числом, то за ширину интервала принимают либо ближайшее целое число, либо ближайшую конечную десятичную дробь..

За начало первого интервала рекомендуется принимать величину, равную Система дискретных случайных величин. - student2.ru . Максимальная варианта Система дискретных случайных величин. - student2.ru должна попасть в последний интервал.

Для подсчета числа вариант, входящих в тот или иной интервал, удобно, просматривая последовательно статистические данные, проставлять значки справа от соответствующего интервала. При этом в интервал включаются варианты, которые строго больше левой границы и меньше или равны правой границе.

Пример 3. В результате измерения некоторого психологического показателя у 25 человек были получены следующие значения:

3,2 4,5 5,2 5,6 6,6
3,8 4,7 5,2 5,7 6,3
4,1 4,9 5,3 5,8 6,4
4,3 5,0 5,3 5,8 6,7
4,3 5,1 5,4 5,9 7,3

Среди этих значений Система дискретных случайных величин. - student2.ru , Система дискретных случайных величин. - student2.ru . Найдем ширину интервала:

Система дискретных случайных величин. - student2.ru Можно взять Система дискретных случайных величин. - student2.ru . Тогда левой границей первого интервала будет число Система дискретных случайных величин. - student2.ru . Составим интервальный вариационный ряд (таблица 4).

Таблица 4

Интервалы Система дискретных случайных величин. - student2.ru (частоты)
(2,7; 3,7]
(3,7; 4,7]
(4,7; 5,7]
(5,7; 6,7]
(6,7; 7,7]
  Система дискретных случайных величин. - student2.ru

Графическое изображение интервального вариационного ряда называется гистограммой. На оси абсцисс откладывают отрезки, изображающие интервалы вариационного ряда, на этих отрезках, как на основаниях, строят прямоугольники с высотами, равными частотам соответствующих интервалов. В результате получается ступенчатая фигура из прямоугольников. На следующем рисунке изображена гистограмма вариационного ряда таблицы 4.

 
  Система дискретных случайных величин. - student2.ru

Расчет числовых выборочных характеристик

дискретного вариационного ряда

Рассмотрим генеральную совокупность объема N. Для изучения дискретного количественного признака Система дискретных случайных величин. - student2.ru из этой совокупности произведена выборка объема n.

Выборочной средней Система дискретных случайных величин. - student2.ru называется среднее арифметическое значение признака выборочной совокупности. Если все значения Система дискретных случайных величин. - student2.ru признака выборки различны, то

Система дискретных случайных величин. - student2.ru .

Если же значения Система дискретных случайных величин. - student2.ru признака имеют соответственно частоты Система дискретных случайных величин. - student2.ru , где Система дискретных случайных величин. - student2.ru , то

Система дискретных случайных величин. - student2.ru или Система дискретных случайных величин. - student2.ru .

Выборочной дисперсией Система дискретных случайных величин. - student2.ru называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от выборочной средней Система дискретных случайных величин. - student2.ru .

Если все значения Система дискретных случайных величин. - student2.ru признака выборки различны, то

Система дискретных случайных величин. - student2.ru .

Если же значения Система дискретных случайных величин. - student2.ru признака имеют соответственно частоты Система дискретных случайных величин. - student2.ru , где Система дискретных случайных величин. - student2.ru , то

Система дискретных случайных величин. - student2.ru или Система дискретных случайных величин. - student2.ru .

Выборочным средним квадратическим отклонением Система дискретных случайных величин. - student2.ru называется квадратный корень из выборочной дисперсии

Система дискретных случайных величин. - student2.ru .

Пример 4. Найти выборочные характеристики Система дискретных случайных величин. - student2.ru , Система дискретных случайных величин. - student2.ru , и Система дискретных случайных величин. - student2.ru по распределению выборки, заданной таблицей 3.

Достроим таблицу 3 для расчета числовых выборочных характеристик (таблица 5).

Таблица 5

Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru
  Система дискретных случайных величин. - student2.ru 24 Система дискретных случайных величин. - student2.ru 95   Система дискретных случайных величин. - student2.ru 533

Система дискретных случайных величин. - student2.ru .

Система дискретных случайных величин. - student2.ru .

Система дискретных случайных величин. - student2.ru .

Расчет числовых выборочных характеристик

интервального вариационного ряда

Для расчета выборочных характеристик интервального вариационного ряда его преобразуют в дискретный, заменяя каждый интервал средним арифметическим его границ.

Пример 6. Найти числовые выборочные характеристики Система дискретных случайных величин. - student2.ru , Система дискретных случайных величин. - student2.ru , и Система дискретных случайных величин. - student2.ru по распределению выборки, заданной таблицей 4.

В таблице 4 представлен интервальный вариационный ряд, поэтому преобразуем его в дискретный. Для этого для каждого интервала найдем его середину. Оформим вычисления в виде таблицы 6.

Таблица 6

Интервал Ср. знач. Система дискретных случайных величин. - student2.ru Частота Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru Система дискретных случайных величин. - student2.ru
(2,7; 3,7] 3,2 3,2 10,24 10,24
(3,7; 4,7] 4,2 25,2 17,64 105,84
(4,7; 5,7] 5,2 27,04 270,4
(5,7; 6,7] 6,2 43,4 38,44 269,08
(6,7; 7,7] 7,2 7,2 51,84 51,84
    Система дискретных случайных величин. - student2.ru   707,4

Система дискретных случайных величин. - student2.ru

Система дискретных случайных величин. - student2.ru

Система дискретных случайных величин. - student2.ru

2. Оценки параметров генеральной совокупности

Оценки параметров генеральной совокупности

Пусть Х – изучаемый количественный признак генеральной совокупности. Как известно, исчерпывающую информацию о генеральной совокупности дает распределение вероятностей. Естественно, возникает задача оценки (приближенного нахождения) параметров, которыми определяется это распределение. Например, для нормального распределения таких параметров два – математическое ожидание и среднее квадратическое отклонение.

Как правило, известны лишь выборочные данные из генеральной совокупности, например, значения изучаемого признака Система дискретных случайных величин. - student2.ru , полученные в результате n наблюдений. На их основании и делается вывод относительно всей генеральной совокупности.

Точечные оценки

Точечной называют оценку, которая определяется одним числом.

Пусть Q — неизвестный параметр теоретического распределения, Система дискретных случайных величин. - student2.ru его статистическая оценка. Оценку Система дискретных случайных величин. - student2.ru можно рассматривать как случайную величину. Для того, чтобы оценка была в определенном смысле наилучшей, к ней предъявляется ряд требований:

– Состоятельность. Точечная оценка называется состоятельной, если при неограниченном увеличении объема выборки (n ® ¥) она стремится к истинному значению параметра Q.

– Несмещенность. Оценка называется несмещенной, если она не содержит систематической ошибки, т.е. среднее значение оценки, определенное по многократно повторенной выборке любого объема из одной и той же генеральной совокупности, стремится к истинному значению параметра. Другими словами, математическое ожидание оценки М(Q*) = Q.

– Эффективность. Эффективной называют статистическую оценку, которая (при заданном объеме выборки) имеет наименьшую возможную дисперсию Система дискретных случайных величин. - student2.ru .

Доказано, что наилучшей в указанном смысле оценкой математического ожидания Система дискретных случайных величин. - student2.ru является Система дискретных случайных величин. - student2.ru ,т.е. Система дискретных случайных величин. - student2.ru .

В качестве оценки дисперсии признака Х в генеральной совокупности D(Х) берется исправленная выборочная дисперсия Система дискретных случайных величин. - student2.ru :

Система дискретных случайных величин. - student2.ru ,где Система дискретных случайных величин. - student2.ru .

В качестве оценки среднего квадратического отклонения признака Х в генеральной совокупности принимается исправленное среднее квадратическое отклонение Система дискретных случайных величин. - student2.ru :

Система дискретных случайных величин. - student2.ru , где Система дискретных случайных величин. - student2.ru .

Интервальные оценки

При выборке малого объема точечная оценка неизвестного параметра может значительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. По этой причине при небольшом числе наблюдений следует пользоваться интервальными оценками.

Интервальнойназывают оценку, определяемую двумя числами – концами интервала, которые находят по известной величине выборочной характеристики. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть Q* – оценка неизвестного параметра Q генеральной совокупности. Вероятности, признанные достаточными для того, чтобы уверенно судить о параметрах генеральной совокупности на основании выборочных характеристик называются доверительными.

Доверительной вероятностью(или надежностью) оценки Q по Q* называется вероятность g, с которой осуществляется неравенство: Система дискретных случайных величин. - student2.ru или Система дискретных случайных величин. - student2.ru , т.е. Система дискретных случайных величин. - student2.ru .

Обычно в качестве доверительных вероятностей выбирают значения 0,95; 0,99; 0,999.

Величина доверительно интервала увеличивается с приближением доверительной вероятности g к единице. В этом случае мы выигрываем в вероятности, но проигрываем в точности. Величина доверительного интервала уменьшается с увеличением объема выборки.

Число δ ( Система дискретных случайных величин. - student2.ru ) называется точностью оценки. Очевидно, что чем меньше δ, тем оценка точнее.

Интервал Система дискретных случайных величин. - student2.ru , который с заданной доверительной вероятностью g покрывает оцениваемый параметр генеральной совокупности, называется доверительным интервалом.

Интервал Система дискретных случайных величин. - student2.ru является доверительным интервалом, который с вероятностью g покрывает математическое ожидание нормально распределенного признака Х генеральной совокупности, если среднее квадратическое отклонение признака Х неизвестно.

Интервал Система дискретных случайных величин. - student2.ru , если Система дискретных случайных величин. - student2.ru , и Система дискретных случайных величин. - student2.ru , если Система дискретных случайных величин. - student2.ru , является доверительным интервалом для среднего квадратического отклонения генеральной совокупности.

Коэффициенты tg, q находятся по таблицам приложений 1 и 2 для заданной доверительной вероятности g и объема выборки n.

Пример 7. Найти точечные и интервальные оценки с вероятностью γ = 0,95 параметров генеральной совокупности Система дискретных случайных величин. - student2.ru и Система дискретных случайных величин. - student2.ru по результатам примера 6.

Найдем точечные оценки.

Система дискретных случайных величин. - student2.ru .

Система дискретных случайных величин. - student2.ru .

Система дискретных случайных величин. - student2.ru .

Найдем интервальные оценки для математического ожидания и среднего квадратического отклонения.

Система дискретных случайных величин. - student2.ru .

Для Система дискретных случайных величин. - student2.ru и Система дискретных случайных величин. - student2.ru по таблице приложения 1 найдем значение Система дискретных случайных величин. - student2.ru , тогда

Система дискретных случайных величин. - student2.ru ;

Система дискретных случайных величин. - student2.ru .

Итак, с доверительной вероятностью 0,95 неизвестный параметр Система дискретных случайных величин. - student2.ru генеральной совокупности заключен в интервале (4,85; 5,62).

Система дискретных случайных величин. - student2.ru .

Для Система дискретных случайных величин. - student2.ru и Система дискретных случайных величин. - student2.ru по таблице приложения 2 найдем значение q = 0,32, тогда

Система дискретных случайных величин. - student2.ru ;

Система дискретных случайных величин. - student2.ru ;

Система дискретных случайных величин. - student2.ru .

Итак, доверительный интервал (0,64; 1,24) покрывает неизвестный пара

3. Корреляционный и регрессионный анализ.
Линейная корреляция

Корреляция и регрессия

Корреляционной зависимостью называется статистическая зависимость между значениями одной случайной величины и групповыми средними другой случайной величины.

Задача корреляционного анализа исследование наличия связи между случайными величинами, оценка ее тесноты и направления.

Задача регрессионного анализа – установление формы зависимости между случайными величинами.

Будем обозначать через (X, Y) двумерную случайную величину – величину, возможные значения которой определяются двумя числами.

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения Система дискретных случайных величин. - student2.ru двух признаков X и Y.

Расчет выборочного коэффициента корреляции

Выборочный коэффициент корреляции Система дискретных случайных величин. - student2.ru является оценкой коэффициента корреляции r генеральной совокупности и также служит для оценки тесноты линейной связи между величинами Х и Y.

Расчет выборочного коэффициента корреляции и выборочных прямых регрессии производится на основе данных выборки.

Система дискретных случайных величин. - student2.ru ,

где n — объем выборки,

Система дискретных случайных величин. - student2.ru — частота пары вариант Система дискретных случайных величин. - student2.ru ,

Система дискретных случайных величин. - student2.ru — варианты Х,

Система дискретных случайных величин. - student2.ru — варианты Y,

Система дискретных случайных величин. - student2.ru , Система дискретных случайных величин. - student2.ru — выборочные средние Х и Y,

Система дискретных случайных величин. - student2.ru , Система дискретных случайных величин. - student2.ru — выборочные средние квадратические отклонения Х и Y.

Выборочные уравнения регрессии имеют вид:

Система дискретных случайных величин. - student2.ru .

Литература

1. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Юрайт, 2014. 479 с.

2. Ермолаев О.Ю. Математическая статистика для психологов. М.: НОУ ВПО МПСИ, Флинта, 2011. 336 с.

3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Юрайт, 2011. 704 с.

4. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: Юнити-Дана, 2010. 552 с.

5. Свешников А.А. Прикладные методы теории случайных функций. М.: Лань, 2011. 464 с.

6. Хрущева И.В., Щербаков В.И., Леванова Д.С. Основы математической статистики и теории случайных процессов. М.: Лань, 2009. 336 с.

7. Боровков А.А. Математическая статистика. М.: Лань, 2010. 704 с.

8. Гнеденко Б.В. Беседы о математической статистике. М.: Либроком, 2010. 88 с.

9. Ивченко Г.И., Медведев Ю.И. Введение в математическую статистику. М.: ЛКИ, 2010. 600 с.

10. Ивченко Г.И., Медведев Ю.И., Чистяков А.В. Задачи с решениями по математической статистике. М.: Дрофа, 2007. 320 с.

11. Королев В.Ю. Теория вероятностей и математическая статистика. М.: ТК Велби, Проспект, 2008. 160 с.

12. Кричевец А.Н. и др. Математика для психологов. М.: МПСИ, Флинта, 2006. 376 с.

13. Кузнецова О.С. Теория вероятностей и математическая статистика. Краткий курс. М.: Окей-книга, 2010. 192 с.

14. Лагутин М.Б. Наглядная математическая статистика. М.: Бином. Лаборатория знаний, 2009. 472 с.

15. Туганбаев А.А., Крупин В.Г. Теория вероятностей и математическая статистика. М.: Лань, 2011. 224 с.

16. Фадеева Л.Н., Лебедев А.В. Теория вероятностей и математическая статистика. М.: Эксмо, 2010. 496 с.

17. Чорней Р.К. Практикум по теории вероятностей и математической статистике. М.: Персонал, 2009. 336 с.

18. Шириков В.Ф., Зарбалиев С.М. Математическая статистика. М.: КолосС, 2009. 480 с.

Интернет-ресурсы

19. Романко, В. К. Статистический анализ данных в психологии [Электронный ресурс] : учебное пособие / В. К. Романко. - 2-е изд. (эл.). - М. : БИНОМ. Лаборатория знаний, 2012. - 312 с.

http://znanium.com/bookread.php?book=366136#none

20. Кремер, Н. Ш. Теория вероятностей и математическая статистика [Электронный ресурс] : учебник для студентов вузов, обучающихся по экономическим специальностям / Н. Ш. Кремер. - 3-е изд., перераб. и доп. - М.: ЮНИТИ-ДАНА, 2012. - 551 с.

http://znanium.com/bookread.php?book=394979

21. Кочетков, Е. С.Теория вероятностей и математическая статистика: Учебник / Е.С. Кочетков, С.О. Смерчинская, В.В. Соколов. - 2-e изд., испр. и перераб. - М.: Форум: НИЦ ИНФРА-М, 2014. - 240 с.

http://znanium.com/bookread.php?book=447828

22. Мхитарян, В. С. Теория вероятностей и математическая статистика [Электронный ресурс] : учеб. пособие / В. С. Мхитарян, Е. В. Астафьева, Ю. Н. Миронкина, Л. И. Трошин; под ред. В. С. Мхитаряна. - 2-е изд., перераб. и доп. - М.: Московский финансово-промышленный университет «Синергия», 2013

http://znanium.com/bookread.php?book=451329#none

Приложение 1

Таблица значений Система дискретных случайных величин. - student2.ru

n g n g
0,95 0,99 0,999 0,95 0,99 0,999
2,78 2,57 2,45 2,37 2,31 2,26 2,23 2,20 2,18 2,16 2,15 2,13 2,12 2,11 2,10 4,60 4,03 3,71 3,50 3,36 3,25 3,17 3,11 3,06 3,01 2,98 2,95 2,92 2,90 2,88 8,61 6,86 5,96 5,41 5,04 4,78 4,59 4,44 4,32 4,22 4,14 4,07 4,02 3,97 3,92 ¥ 2,093 2,064 2,045 2,032 2,023 2,016 2,009 2,001 1,996 1,001 1,987 1,984 1,980 1,960 2,861 2,797 2,756 2,720 2,708 2,692 2,679 2,662 2,649 2,640 2,633 2,627 2,617 2,576 3,883 3,745 3,659 3,600 3,558 3,527 3,502 3,464 3,439 3,418 3,403 3,392 3,374 3,291

Приложение 2

Таблица значений Система дискретных случайных величин. - student2.ru

n   g n   g
0,95 0,99 0,999 0,95 0,99 0,999
1,37 1,09 0,92 0,80 0,71 0,65 0,59 0,55 0,52 0,48 0,46 0,44 0,42 0,40 0,39 2,67 2,01 1,62 1,38 1,20 1,08 0,98 0,90 0,83 0,78 0,73 0,70 0,66 0,63 0,60 5,64 3,88 2,98 2,42 2,06 1,80 1,60 1,45 1,33 1,23 1,15 1,07 1,01 0,961 0,92 0,37 0,32 0,28 0,26 0,24 0,22 0,21 0,188 0,174 0,161 0,151 0,143 0,115 0,099 0,089 0,58 0,49 0,43 0,38 0,35 0,32 0,30 0,269 0,245 0,226 0,211 0,198 0,160 0,136 0,120 0,88 0,73 0,63 0,56 0,50 0,46 0,43 0,38 0,34 0,31 0,29 0,27 0,211 0,185 0,162

Содержание

ВВЕДЕНИЕ.. 3

ГЛАВА I. ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ.. 4

1. Комбинаторика. 4

2. Случайные события. 6

3. Вероятность события. 7

4. Теоремы сложения и умножения вероятностей. 9

5. Формула полной вероятности. 13

6. Формула Байеса. 14

7. Повторные испытания. Формула Бернулли. 15

8. Формула Пуассона. 16

9. Дискретные случайные величины. Числовые характеристики дискретных
случайных величин. Функция распределения. 16

10. Непрерывные случайные величины. Функция распределения. Плотность распределения. Числовые характеристики непрерывных случайных величин. 21

11. Нормальный закон распределения. 25

12. Системы дискретных случайных величин. 27

Задания для контрольной работы.. 32

ГЛАВА II. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКУЮ СТАТИСТИКУ.. 39

1. Первичная обработка выборочных данных. Группировка статистических
данных. 39

2. Оценки параметров генеральной совокупности. 47

3. Корреляционный и регрессионный анализ. Линейная корреляция. 50

ЛИТЕРАТУРА.. 51

Приложение 1. 53

Приложение 2. 53

Наши рекомендации