Дроссельная характеристика двигателя
Дроссельная характеристика выражает зависимость тяги РR и удельного расхода топлива Суд от частоты вращения ротора двигателя (от оборотов двигателя).
На рис. 10 изображена дроссельная характеристика двигателя Д-ЗОКП при скорости полета V=0 и высоте Hмса=о (t°=15°С и p = 760 мм рт. ст.).
График (см. рис. 10,а) выражает зависимость тяги, а график (см. рис. 10,б) зависимость удельного расхода топлива от частоты вращения двигателя.
Основные режимы дроссельной характеристики нанесены на графиках рис. 10, а, б и даны в табл. 2 и 3.
Как видно из графиков рис. 10 и табл. 2 и 3 каждый режим характеризуется прежде всего частотой вращения ротора высокого давления и ротора низкого давления в % (1% оборотов для ротора высокого давления соответствует 109 об/мин, для ротора низкого давления — 53,8 об/мин).
Режим малого газа. На режиме малого газа двигатель должен работать устойчиво с оборотами 60±1% (V=0, Hмса=о). Тяга на этом режиме минимальная около 940 кгс. Частота вращения и тяга зависят от внешних условий, а в полете и от высоты. На режиме малого газа почти вся тепловая энергия газов расходуется на вращение двигателя. Следовательно, скорость истечения газов из реактивного сопла и тяга двигателя небольшие. Часовые расходы топлива минимальны (800 кг/ч), а удельные — велики, так как тяга незначительная.
При увеличении расхода топлива (увеличении РУД) увеличивается температура газов перед турбиной, крутящий момент и частота вращения турбины двигателя, вследствие чего компрессор увеличивает подачу воздуха. Увеличение расхода и температуры газов вызывает увеличение тяги. На малых оборотах тяга увеличивается медленно, а с их ростом — быстрее. Быстрый рост тяги с увеличением расхода топлива (частоты вращения) объясняется тем, что на вращение турбины (компрессора и др.) с несколько большей частотой вращения требуется небольшой дополнительный крутящий момент турбины.
Рис. 10. Дроссельная характеристика двигателя Д-ЗОКП (У==0; 1=1УС, р==760 мм рт, ст.):
а—зависимость РR от nнд ; б—зависимость СR от пвд
Следовательно, дополнительный расход топлива и воздуха идет в основном на увеличение тяги. В этом случае увеличивается секундный расход воздуха в результате увеличения частоты вращения компрессора, увеличивается давление газов перед турбиной и скорость их истечения из реактивного сопла.
Удельный расход топлива резко падает, так как тяга возрастает в большей степени, чем часовые расходы топлива. Минимальные удельные расходы топлива будут при крейсерских режимах работы двигателя (см. рис. 10,6).
При частоте вращения ротора высокого давления около 79% происходит скачкообразное изменение параметров двигателя по причине закрытия клапанов перепуска воздуха в наружный контур из 5-й и 6-й ступени компрессора высокого давления, при этом тяга скачкообразно возрастает, а удельный расход топлива также скачкообразно уменьшается.
При выходе двигателя на взлетный режим часовые расходы топлива, температура газов и обороты турбины становятся максимальными. Компрессор обеспечивает максимальную подачу воздуха. Расход газов через двигатель и скорость их истечения достигают максимума, и тяга становится максимальной пв.д=97,5 (+0.5… -1.5) %, PRmах=12000кгс).
При увеличении оборотов двигатель проходит следующие характерные режимы работы.
Режим 0,42 номинального характеризуется оборотами высокого давления nвд=79,5...82% и тягой 4000—2% кгс. Этот режим является посадочным малого газа.
Режим 0,7номинального характеризуется nвд=86,5 ... 88,5%. PR=6650 кгс. Необходимо помнить, что на этом режиме производится прогрев двигателя.
Режим 0,9 номинальною характеризуется nвд=90. ..92% и PR=8550 кгс. Это наибольший режим, который можно эксплуатировать без дополнительных ограничений по времени в каждом полете.
Номинальный режим характеризуется nвд==93±1%, PR=9500 кгс. На номинальном режиме производится набор высоты. Горизонтальный полет при необходимости можно выполнять на номинальном режиме.
Взлетный режим характеризуется максимальной тягой nвд=97,5%, PR=12000 кгс. На этом режиме производится взлет самолета и уход на второй круг. Он может быть использован с ограничением по времени в крайне трудных условиях полета (полет и заход на посадку на одном двигателе). Взлетным режимом непрерывно можно пользоваться не более 5 мин. В особых случаях полета допускается не более 15 мин.
Режим максимальной обратной тяги (реверса) имеют все двигатели. Устанавливается этот режим специальными рычагами при положении РУД на режиме малого газа после приземления самолета и при прерванном взлете, nвд=93+1%, РR=-3800 кгс при V=0. Величина отрицательной тяги на этом режиме зависит от скорости полета, причем, чем больше скорость полета, тем отрицательная тяга больше (см. рис. 12). Так, на скорости пробега 200 км/ч РR=5200 кгс.
При эксплуатации двигателя необходимо учитывать, что величина тяги, частоты вращения и температуры газов на каждом режиме в значительной степени зависят от температуры воздуха и атмосферного давления. На рис.11 показана зависимость тяги Д-30КП на взлётном режиме от температуры воздуха при различном атмосферном давлении.
Из графиков (рис. 11) видно, что при увеличении температуры воздуха до 15° С при постоянном атмосферном давлении 760 мм рт. ст. тяга почти не изменяется (незначительно увеличивается). При дальнейшем увеличении температуры
Рис.11 Зависимость тяги на взлётном режиме от температуры воздуха при различном атмосферном давлении
воздуха тяга резко уменьшается вследствие уменьшения расхода воздуха через двигатель, понижения степени повышения давления компрессора и уменьшения подачи топлива с целью сохранения постоянной (максимальной) частоты вращения двигателя и температуры газов перед турбиной.
Рассмотрим характер изменения тяги на малых и больших оборотах с позиции летной эксплуатации самолета.Согласно требованиям НЛГС приемистость двигателя характеризуется следующими данными. При переводе РУД на земле с режима малого газа до взлетного за 1 -2 с, двигатель устанавливает взлетные обороты за 7... 10 с, а в полете с режима малого полетного газа (0,42 номинала) за 4... 7 с. Тяга двигателя до оборотов высокого давления (»79%) будет расти медленно (в среднем на 1% увеличения оборотов рост тяги составляет около 100 кгс). При увеличении оборотов с 79% до взлетных 97,5% тяга растет значительно быстрее (в среднем на 1% оборотов тяга увеличивается в среднем на 490 ... 500 кгс). Эту особенность приемистости и изменения тяги следует учитывать на снижении при заходе на посадку и особенно при уходе на второй круг.