Интервальные оценки параметров распределения.
Интервальный метод оценивания параметров распределения случайных величин заключается в определении интервала (а не единичного значения), в котором с заданной степенью достоверности будет заключено значение оцениваемого параметра. Интервальная оценка характеризуется двумя числами – концами интервала, внутри которого предположительно находится истинное значение параметра. Иначе говоря, вместо отдельной точки для оцениваемого параметра можно установить интервал значений, одна из точек которого является своего рода "лучшей" оценкой. Интервальные оценки являются более полными и надежными по сравнению с точечными, они применяются как для больших, так и для малых выборок. Совокупность методов определения промежутка, в котором лежит значение параметра Т, получила название методов интервального оценивания. К их числу принадлежит метод Неймана.
Постановка задачи интервальной оценки параметров заключается в следующем.
Имеется: выборка наблюдений (x1, x2, …, xn) за случайной величиной Х. Объем выборки n фиксирован.
Необходимо с доверительной вероятностью g = 1– a определить интервал t0 – t1 (t0 < t1), который накрывает истинное значение неизвестного скалярного параметра Т (здесь, как и ранее, величина Т является постоянной, поэтому некорректно говорить, что значение Т попадает в заданный интервал).
Ограничения: выборка представительная, ее объем достаточен для оценки границ интервала.
Эта задача решается путем построения доверительного утверждения, которое состоит в том, что интервал от t0 до t1 накрывает истинное значение параметра Т с доверительной вероятностью не менее g . Величины t0 и t1 называются нижней и верхней доверительными границами (НДГ и ВДГ соответственно). Доверительные границы интервала выбирают так, чтобы выполнялось условие P(t0 <= q <= t1) = g . В инженерных задачах доверительную вероятность g назначают в пределах от 0,95 до 0,99. В доверительном утверждении считается, что статистики t0 и t1 являются случайными величинами и изменяются от выборки к выборке. Это означает, что доверительные границы определяются неоднозначно, существует бесконечное количество вариантов их установления.
На практике применяют два варианта задания доверительных границ: устанавливают симметрично относительно оценки параметра, т.е. t0 = q – Еg , t1 = q + Еg , где Еg выбирают так, чтобы выполнялось доверительное утверждение. Следовательно, величина абсолютной погрешности оценивания Еg равна половине доверительного интервала; устанавливают из условия равенства вероятностей выхода за верхнюю и нижнюю границу Р(Т > q + Е1,g ) = Р(Т < q – Е2,g )= a/2. В общем случае величина Е1,g не равна Е2,g . Для симметричных распределений случайного параметра q в целях минимизации величины интервала значения Е1,g иЕ2,g выбирают одинаковыми, следовательно, в таких случаях оба варианта эквивалентны.
Нахождение доверительных интервалов требует знания вида и параметров закона распределения случайной величины q . Для ряда практически важных случаев этот закон можно определить из теоретических соображений.
Метод позволяет по имеющейся случайной выборке построить функцию и(Т, q ), распределенную асимптотически нормально с нулевым математическим ожиданием и единичной дисперсией. В основе метода лежат следующие положения. Пусть: f(х, q ) – плотность распределения случайной величины Х; ln[L(x, q )] – логарифм функции правдоподобия; ;
А2 =М(у)2 – дисперсия у. Если математическое ожидание М(у) = 0 и дисперсия у конечна, то распределение случайной величины w = асимптотически нормально с параметрами 0 и 1 при n→∞ .