Истечение и дросселирование газов и паров
Обратимое адиабатное течение, обратимый процесс течения газа без теплообмена с окружающей средой при отсутствии внутренних источников теплоты.
Необратимое адиабатное течение, необратимый (с трением) процесс течения газа без теплообмена с окружающей средой.
Кризис течения, течение, в котором скорость газа достигает величины равной местной скорости звука.
Скорость звука, скорость распространения в среде малых возмущений. Малыми называются такие возмущения среды, в которых местное изменение давления пренебрежимо мало по сравнению сообщим давлением.
Местная скорость звука, скорость распространения звука в газе при его параметрах в данном сечении потока. Определяют из выражения: или для идеального газа .
Критические параметры газа при течении, параметры газа в сечении канала, где скорость течения равна местной скорости звука.
Критическое отношение давлений, отношение критического значения давления газа ркр к его давлению во входном сечении канала р0: bкр = ркр/р0. Для идеального газа эту величину можно определить из выражения .
Уравнение первого закона термодинамики для потока вещества, уравнение, согласно которому, в потоке вещества, подведенная или отведенная теплота dq расходуется на изменение энтальпии dh, изменение кинетической wdw и потенциальной gdH энергии потока и на техническую работу dlтех: dq = dh + wdw + gdH + dlтех. При рассмотрении процессов протекающих в соплах или диффузорах считают, что потенциальная энергия потока неизменна, а техническая работа отсутствует. В этом случае уравнение первого закона термодинамики имеет вид: dq = dh + wdw.
Сопло, устройство, в котором происходит увеличение скорости движения потока. Сопла бывают: геометрические, тепловые, механические, расходные. Наиболее распространены геометрические сопла, в которых увеличение скорости потока происходит в результате адиабатного расширения газа, за счет понижения давления, при изменении площади поперечного сечения канала.
Диффузор, канал, в котором происходит уменьшение скорости движения потока и возрастание давления.
Суживающееся сопло, сопло, поперечное сечение которого уменьшается по направлению течения среды. В суживающихся соплах скорость на выходе не может быть больше местной скорости звука, а давление меньше критического. Скорость истечения w2 и массовый расход т через сопло определяют с помощью уравнений: , , где h0, h2 – энтальпии газа во входном и выходном сечении сопла, Дж/кг; f2 – площадь выходного сечения сопла, м2; v2 – удельный объем газа в выходном сечении сопла, м3/кг. Для идеального газа можно получить соответственно
, . Как видно из формулы, массовый расход обращается в нуль при р2 = р1 и р2 = 0. Следовательно, в этом промежутке давлений расход достигает максимального значения и в этом случае на выходе из сопла устанавливается критическое давление.
Сопло Лаваля (комбинированное сопло), геометрическое сопло, состоящее из суживающейся и расширяющейся части и служащее для увеличения скорости потока газа выше местной скорости звука. Форма сопла и графики изменения скорости потока и местной скорости звука вдоль канала представлены на рисунке. Скорость истечения w2 и массовый расход т определяют с помощью уравнений: , , где fmin – площадь минимального сечения сопла, м2; vкр – удельный объем газа в минимальном сечении сопла, м3/кг; wкр – критическая скорость равная местной скорости звука в минимальном сечении сопла, м/с.
Изображение процесса адиабатного истечения, производят обычно в Ts-, hs-диаграммах. На рисунке представлены процессы адиабатного расширения в hs-диаграмме: процесс 0-2 – обратимое адиабатное истечение; процесс 0-2д – необратимое адиабатное истечение.
Коэффициент скорости сопла, коэффициент, характеризующий степень приближения действительного процесса истечения (с учетом трения) к теоретическому. Он равен отношению действительной скорости истечения w2д к теоретической w2: j = w2д/ w2. На практике величина j находится в пределах 0,93-0,98.
Дросселирование, эффект падения давления в потоке рабочего тела при его прохождении через местное сопротивление (резкое изменение сечения) без совершения внешней работы. В технике этот процесс рассматривают как адиабатный. Адиабатное дросселирование широко используют в качестве эффективного способа охлаждения газа.
Уравнение адиабатного дросселирования, уравнение, показывающее, что в результате адиабатного дросселирования энтальпия рабочего тела до и после местного сопротивления одинакова: h1 = h2. В самом дросселе энтальпия может изменяться.
Эффект Джоуля-Томсона, явление изменения температуры рабочего тела при адиабатном дросселировании. Температура может уменьшаться, увеличиваться или оставаться неизменной.
Дифференциальный дроссель-эффект, величина, характеризующая темп изменения температуры рабочего тела при адиабатном дросселировании: К/Па. Если температура рабочего тела при дросселировании уменьшается, то ah > 0, если возрастает ah < 0, а если неизменна ah = 0. Идеальный газ дросселируется без изменения температуры.
Интегральный дроссель-эффект, величина равная изменению температуры рабочего тела в процессе адиабатного дросселирования: К.
Точка инверсии, состояние рабочего тела, в котором ah = 0. Температуру рабочего тела в этом случае называют температурой инверсии. Если температура газа меньше температуры инверсии, то в процессе адиабатного дросселирования ah > 0, а газ в процессе понижает температуру.
Кривая инверсии, геометрическое место точек инверсии на диаграмме состояния вещества.
Изображение процесса адиабатного дросселирования. Для практического применения процессы адиабатного дросселирования изображают на hs- диаграммах (см. рисунок). Здесь: 1-2 - дросселирование кипящей жидкости, в конце получают влажный насыщенный пар; 3-4 - дросселирование влажного насыщенного пара, при этом увеличивается степень сухости пара; 5-6 - дросселирование сухого насыщенного пара, пар становится перегретым.