Методические указания к его выполнению.
Типовой расчет и
Методические указания к его выполнению.
Тема 1
Комбинаторика.
Задачи 1-4
Перестановки - это выборки (комбинации), состоящие из n элементов и отличающиеся друг от друга порядком следования элементов.
; ;
перестановки с повторениями .
Размещениями из n элементов по k элементов будем называть упорядоченные подмножества, состоящие из k элементов, множества , состоящего из n элементов.(порядок важен). ; размещения с повторениями . Одно размещение от другого отличается только не только составом выбранных элементов, но и порядком их расположения.
Сочетаниямииз n элементов по m элементов будем называть любое подмножество, состоящие из m элементов, множества , состоящего из n элементов. (порядок не важен). ; сочетания с повторениями .
Одно сочетание от другого отличается только составом выбранных элементов.
Сложная выборка = .
Решения задач:
1.Сколько существует пятизначных чисел, состоящих из цифр 7,8,9, в которых цифра 8 повторяется 3 раза, а цифры 7 и 9 по одному разу.
Решение.Каждое пятизначное число отличается от другого порядком следования цифр, причемn1=1 , n2=3, а n3=1, а их количество равна 5, т.е. является перестановкой с повторениями из 5 элементов. Их число находим по формуле (3) .
2.На карточках написаны буквы М,А,Т,Е,М,А,Т,И,К,А. Сколько различных 10-ти буквенных «слов» можно составить из этих карточек? (здесь и далее словом считается любая последовательность букв русского алфавита)
Решение.Перестановка двух букв М, осуществляемая Р2= 2 способами, трех букв А, осуществляемая Р3= 3!=6 способами и перестановка двух букв Т, осуществляемая Р2= 2 способами не меняет составленное из карточек слово.слов.
3.Студенты второго курса изучают 10 различных дисциплин. Определить – сколькими способами можно составить расписание на понедельник, если в понедельник планируется поставить 5 пар?
Решение: Каждый вариант расписания представляет собой выборку 5 элементов из 10, причем эти варианты отличаются друг от друга не только выбором этих дисциплин, но и порядком их следования, т.е. является размещением из 10 элементов по 5. .
4. Сколько существует различных вариантов выбора 4-х кандидатур из 9-ти специалистов для поездки в 4 различных страны?
5.Сколькими способами можно выбрать 4 монеты из четырех пятикопеечных монет и из четырех двухкопеечных монет?
Решение: порядок выбора монет неважен, и примерами соединений могут являться {5,5,5,5}, {2,2,2,2}, {5,2,5,5} и т.д. Это задача о числе сочетаний из двух видов монет по четыре с повторениями.
способов.
6.В кондитерской имеется 5 разных сортов пирожных. Сколькими способами можно выбрать набор из 4 пирожных?
Решение: это задача о числе сочетаний из 5 видов пирожных по 4 с повторениями.
способов
7. Сколько всего чисел можно составить из цифр 1, 2, 3, 4, 5, в каждом из которых цифры расположены в неубывающем порядке?
Решение: это задача о числе сочетаний из 5 цифр по одному, по два, по три, по четыре и по пяти с повторениями в каждом случае.
; ; ;
;
Согласно правилу сложения: 5+15+35+70+126=251 чисел.
Решение: .
8. Решить уравнения а) ; б) .
Решение:a) ; ; ; ;
б) ; ; ; .
Тема 2
Задачи 5 и 6.
Случайным событием ( или просто событием) в теории вероятности называется любой факт, который в результате испытания может произойти или не произойти. Событие – это не какое-нибудь происшествие, а лишь возможный исход, результат испытания.
Под испытанием (опытом, экспериментом) понимается выполнение определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.
События обозначаются, как правило, заглавными буквами латинского алфавита: А, В, С, . . . .
Событие называется достоверным, если оно обязательно наступит в результате данного опыта, обозначается через Ω.
Событие называется невозможным, если оно заведомо не произойдет в результате проведения опыта. Обозначается Ø.
Два события называются несовместными, если появление одного из них исключает появление другого события в одном и том же опыте, т.е. они не смогут произойти вместе в одном опыте. В противном случае события называются совместными.
Несколько событий в данном опыте называются равновозможными, если ни одно из них не является объективно более возможным, чем другие, т.е. все события имеют равные шансы.
Несколько событий образуют полную группу, если в результате опыта появится хотя бы одно из них.
Суммой событий А и В называется событие С=А+В, состоящее в наступлении хотя бы одного из них (т.е. или А, или В, или А и В одновременно).
Произведением событий А и В называется событие С=А·В, состоящее в совместном наступлении этих событий (т.е. и А, и В одновременно).
Разностью событий A и B называется событие C=А-В, состоящее из всех элементарных событий, входящих в A, но не входящих в B.
Событие называется противоположным событию A, если оно происходит тогда и только тогда, когда не происходит событие А (т.е. означает, что событие А не наступило ).
Событие А влечет событие В (или А является частным случаем В), если из того, что происходит событие А следует, что происходит событие В; записывают А В. Если А В и В А, то события А и В называют равными; записывают А=В.
Примеры решения задач.
1.Пусть событие А заключается в том, что первый стрелок попал в мишень,
а событие В заключается в том, что второй стрелок попал в мишень. Тогда событие С=А+В будет заключаться в следующем: или первый стрелок попал в мишень , или второй стрелок попал в мишень, или оба стрелка попали в мишень – иными словами в мишень попал хотя бы один из стрелков.
Событие Д=А В будет заключаться в том, что в мишень попали оба стрелка .
2.На предприятии выпускают изделия трех сортов. Событие А заключается в том, что выбранное изделие - 1 сорта, событие В заключается в том, что изделие 2 сорта, событие С заключается в том, что изделие третьего сорта.
Тогда событие А+В означает, что выбранное изделие либо 1, либо 2 сорта.
Событие А·В – невозможное событие; событие означает, что выбранное изделие 2 сорта; событие А·В+С означает, что выбранное изделие третьего сорта.
3. Экспедиция издательства отправила газеты в три почтовых отделения. Вероятность своевременной доставки газет в первое отделение равна 0,95, во второе - 0,9, в третье - 0,8. Найти вероятность того, что только одно отделение получит газеты вовремя;
Решение: Введем события
А1 = (газеты доставлены своевременно в первое отделение),
А2 = (газеты доставлены своевременно во второе отделение),
А3 = (газеты доставлены своевременно в третье отделение),
по условию P(A1)=0,95; P(A2) = 0,9; P(A3)=0,8.
Найдем вероятность события Х = (только одно отделение получит газеты вовремя). Событие Х произойдет, если
или газеты доставлены своевременно в 1 отделение, и доставлены не вовремя во 2 и 3,
или газеты доставлены своевременно в 2 отделение, и доставлены не вовремя во 1 и 3,
или газеты доставлены своевременно в 3 отделение, и доставлены не вовремя во 2 и 1.
Таким образом так как события А1, А2, А3 - независимые, по теоремам сложения и умножения получаем , P(X)=P(A1Ā2A3 + Ā1A2 A3 + A1A2 Ā3)=0,95 =0,32
4. На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и . Решение: С= или , что гораздо проще С=(А1+А2)(А3+А4). Тогда =A1A2+A3A4. |
Тема 3
Геометрическая вероятность.
Задача 7.
Геометрическая вероятность – вероятность попадания точки в область (отрезок, часть плоскости или пространства).
Обозначим меру (длину, площадь, объем) области через m(Ω). При этом вероятность попадания точки, брошенной наудачу в область A - часть области Ω, равна отношению мер областей A и Ω, соответственно равные m(A) и m(Ω).
Формула геометрической вероятности имеет вид: .
Решение задач.
Задача о встрече
Пьеро и Буратино условились встретиться в определенном месте между двумя и тремя часами дня. Они договорись, что тот, кто придет первым, ждет другого в течении 10 минут, после чего уходит. Чему равна вероятность их встречи , если каждый из друзей может прийти в любое время в течение указанного часа независимо от другого?
Решение. Будем считать интервал с 14 до 15 часов дня отрезком [0,1] длиной 1 час. Пусть х и у — моменты прихода Пьеро и Буратино (они являются точками отрезка [0,1]). Все возможные результаты эксперимента – множество точек квадрата со стороной 1: .
Можно считать, что эксперимент сводится к бросанию точки наудачу в квадрат. При этом благоприятными исходами являются точки множества (10 минут = 1/6 часа). То есть попадание в множество А наудачу брошенной в квадрат точки означает, что Буратино и Пьеро встретятся. Тогда вероятность встречи равна .
2.В прямоугольник 5*4 см2 вписан круг радиуса 1,5 см. Какова вероятность того, что точка, случайным образом поставленная в прямоугольник, окажется внутри круга?
Решение: По определению геометрической вероятности искомая вероятность равна отношению площади круга (в который точка должна попасть) к площади прямоугольника (в которой точка ставится), т.е. 0353.
3. В треугольник с вершинами в точках (−1 ,0 ) ; (0, 1) ; (3,0) наудачу брошена точка (х , у ) . Найти вероятность того, что координаты точки удовлетворяют неравенству
2x + y ≤ 0.
Решение: Сделать чертеж. Закрасить область, удовлетворяющую условию задачи.P=1/6.
Тема 4
Задача 8.
Пусть событие А может произойти в результате осуществления одного события из
некоторой полной группы событий H1, H2, …Hn.
События этой группы обычно называют гипотезами. Тогда
P(A) = P(H1)PH1(A) + P(H2) PH2(А) +…+ P(Hn)PHn(A) (1)
(формула полной вероятности), причем
P(H1) +P(H2) +…+ P(Hn) = 1.
Пусть в результате испытания произошло событие А, которое могло наступить только
вместе с одним из событий H1, H2,…Hn, образующих полную группу событий (они
называются гипотезами). Требуется найти вероятность событий H1, H2,… Hn после
испытания, когда событие А имело место, т.е. PA(Hi), i = 1,2,…n. Для нахождения этих вероятностей используют формулы Байеса (формулы гипотез):
PA (Hi) = (2)
Замечания.
1) Вероятности PA(H1) называются послеопытными (апостериорными) вероятностями
гипотез Hi, а вероятности P(Hi) - доопытными (априорными) вероятностями гипотез
Hi. Эти вероятности различаются.
2) Знаменатель в правой части формулы (2) совпадает с правой частью формулы (1) и
равен P(A).
Решение задач.
1.На трех станках-автоматах обрабатываются однотипные детали, поступающие после обработки на общий конвейер. Первый станок дает 2% брака, второй – 7%, третий – 10%. Производительность первого станка в 3 раза больше производительности второго, а третьего – в 2 раза меньше, чем второго.
а) Каков процент брака на конвейере?
б) Каковы доли деталей каждого станка среди бракованных деталей на конвейере?
Решение. Возьмем с конвейера наудачу одну деталь и рассмотрим событие А – деталь бракованная. Оно связано с гипотезами относительно того, где была обработана эта деталь: Нi – взятая наудачу деталь обработана на i-ом станке,i=1,2,3 .
Условные вероятности (в условии задачи они даны в форме процентов):
, , .
Зависимости между производительностями станков означают следующее: . Причем P(H1) +P(H2) +P(H3) = 1,так как гипотезы образуют полную группу.
Для того, чтобы найти вероятности появления гипотез, нам придется решить систему вышеперечисленных уравнений. Решив ее, получим .
а) Полная вероятность того, что взятая наудачу с конвейера деталь – бракованная:
P(A) = P(H1)PH1(A) + P(H2) PH2(А) + P(H3)PH3(A)== .
Другими словами, в массе деталей, сходящих с конвейера, брак составляет 4%.
б) Пусть известно, что взятая наудачу деталь – бракованная. Пользуясь формулой Байеса, найдем условные вероятности гипотез:
,
,
.
Таким образом, доли деталей каждого станка среди бракованных деталей на конвейере для первого станка составляет 33%, второго – 39%, третьего – 28%.
Тема 5
Повторные испытания.
Задачи 9-11.
Формула Бернулли:Если производится n независимых испытаний, в каждом из которых событие А появится с вероятностью р, то вероятность того, что событие А появится ровно k раз в n испытаниях, выражается формулой, которую называют формулой Бернулли
Pn(k) = Cnkpk qn – k ,где q=1-p (1),
Иногда бывают полезны следующие формулы: Вероятность того, что событие A:
1) наступит n раз: ; (2)
2) не наступит ни разу: ; (3)
3) наступит хотя бы один раз: ; (4)
4) наступит не более k раз: (5)
или . (6)
5) наступит не менее k раз: (7)
или . (8)
Из формул (5)и(6), а также (7)и (8) выбирают ту, которая содержит меньше слагаемых.
Тема 6.
Задачи 12-13.
Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной.
Понятие случайной величины играет весьма важную роль в теории вероятностей. Если «классическая» теория вероятностей изучала главным образом случайные события, то современная теория вероятностей преимущественно имеет дело со случайными величинами.
Сами случайные величины обозначаются прописными латинскими буквами X, Y, Z и т.д., а их возможные значения – соответствующими строчными x, y, z. Например, если случайная величина имеет три возможных значения, то будем обозначать их так: х1 ,х2 ,х3 .
Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной).
Соответствие между возможными значениями случайной величины и их вероятностями называют законом распределения дискретной случайной величины.
Закон распределения можно задать в виде таблицы, формулы или графически.
При табличном задании закона распределения в первой строке таблицы перечислены все значения случайной величины в порядке возрастания, а в нижней – соответствующие им вероятности.
Х | х1 | х2 | х3 | ….. | xn |
Р | p1 | p2 | p3 | ….. | pn |
Причем следует учитывать, что
(1).
Для наглядности ряд распределения случайной величины можно изобразить графически. Для этого в прямоугольной системе координат по оси абсцисс ОХ будем откладывать значения случайной величины , k=1, 2, …, n, а по оси ординат OY – соответствующие им вероятности р1, р2, …, рn. Полученные точки соединяются отрезками прямых.
Построенная таким образом фигура называется многоугольником или полигоном распределения вероятностей.
Многоугольник распределения, также как и ряд распределения, полностью характеризует случайную величину. Он является одним из форм закона распределения.
Математическое ожидание,
Дисперсия,
Тема 7.
Задача 14
Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной.
Плотностью распределения вероятностей непрерывной случайной величины Х называется функция f(x) – первая производная от функции распределения F(x).
Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.
Зная плотность распределения, можно вычислить вероятность того, что некоторая случайная величина Х примет значение, принадлежащее заданному интервалу.
Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (a, b), равна определенному интегралу от плотности распределения, взятому в пределах от a до b.
Функция распределения может быть легко найдена, если известна плотность распределения, по формуле:
Решение задач.
1. Случайная величина подчинена закону распределения с плотностью:
Требуется найти коэффициент а, определить вероятность того, что случайная величина попадет в интервал от 0 до .
Решение:
Для нахождения коэффициента а воспользуемся свойством .
2 .Задана непрерывная случайная величина х своей функцией распределения f(x).
Требуется определить коэффициент А, найти функцию распределения, определить вероятность того, что случайная величина х попадет в интервал .
Решение:
Найдем коэффициент А.
Найдем функцию распределения:
1) На участке :
2) На участке
3) На участке
Итого:
Найдем вероятность попадания случайной величины в интервал .
Ту же самую вероятность можно искать и другим способом:
ПРИЛОЖЕНИЕ I
Таблица значений функции |
ПРИЛОЖЕНИЕ II
Таблица значений функции Лапласа | |
ПРИЛОЖЕНИЕ III
Таблица значений функции Пуассона |
Литература
Основная литература
1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов вузов. Изд 4-е, стер. – М.: Высш. шк., 2008. – 400 с.
2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнения и задачах. В 2-х ч. Ч. II: Учеб. пособие для втузов. – 5-е изд., испр. – М.: Высш. шк., 2007. – 416 с.
3. Гмурман В.Е. Теории вероятностей и математическая статистика: Учеб. пособие для вузов. Изд 6-е, стер. – М.: Высш. шк., 2008. – 479 с.
4. Карасев А.И., Аксютина З.М., Савельева Т.И. Курс высшей математики для экономических вузов. В 2-х частях. Ч. II. Теория вероятностей и математическая статистика. Линейное программирование. –М.: Высшая школа, 2002.
Дополнительная литература
5. Бронштейн И.Н., Семендяев К. А. Справочник по математике для инженеров и учащихся ВТУЗов. - М.: Наука, 2006.
6. Вентцель Е.С. Теория вероятностей: Учеб. для вузов. – 5-е изд. стер. – М.: Высш. шк., 2005. – 576 с.
7. Колде Я.К. Практикум по теории вероятностей и математической статистике: Учебное пособие для техникумов. – М.: Высшая школа, 2001. – 157 с.
Типовой расчет и
методические указания к его выполнению.
Тема 1
Комбинаторика.
Задачи 1-4
Перестановки - это выборки (комбинации), состоящие из n элементов и отличающиеся друг от друга порядком следования элементов.
; ;
перестановки с повторениями .
Размещениями из n элементов по k элементов будем называть упорядоченные подмножества, состоящие из k элементов, множества , состоящего из n элементов.(порядок важен). ; размещения с повторениями . Одно размещение от другого отличается только не только составом выбранных элементов, но и порядком их расположения.
Сочетаниямииз n элементов по m элементов будем называть любое подмножество, состоящие из m элементов, множества , состоящего из n элементов. (порядок не важен). ; сочетания с повторениями .
Одно сочетание от другого отличается только составом выбранных элементов.
Сложная выборка = .
Решения задач:
1.Сколько существует пятизначных чисел, состоящих из цифр 7,8,9, в которых цифра 8 повторяется 3 раза, а цифры 7 и 9 по одному разу.
Решение.Каждое пятизначное число отличается от другого порядком следования цифр, причемn1=1 , n2=3, а n3=1, а их количество равна 5, т.е. является перестановкой с повторениями из 5 элементов. Их число находим по формуле (3) .
2.На карточках написаны буквы М,А,Т,Е,М,А,Т,И,К,А. Сколько различных 10-ти буквенных «слов» можно составить из этих карточек? (здесь и далее словом считается любая последовательность букв русского алфавита)
Решение.Перестановка двух букв М, осуществляемая Р2= 2 способами, трех букв А, осуществляемая Р3= 3!=6 способами и перестановка двух букв Т, осуществляемая Р2= 2 способами не меняет составленное из карточек слово.слов.
3.Студенты второго курса изучают 10 различных дисциплин. Определить – сколькими способами можно составить расписание на понедельник, если в понедельник планируется поставить 5 пар?
Решение: Каждый вариант расписания представляет собой выборку 5 элементов из 10, причем эти варианты отличаются друг от друга не только выбором этих дисциплин, но и порядком их следования, т.е. является размещением из 10 элементов по 5. .
4. Сколько существует различных вариантов выбора 4-х кандидатур из 9-ти специалистов для поездки в 4 различных страны?
5.Сколькими способами можно выбрать 4 монеты из четырех пятикопеечных монет и из четырех двухкопеечных монет?
Решение: порядок выбора монет неважен, и примерами соединений могут являться {5,5,5,5}, {2,2,2,2}, {5,2,5,5} и т.д. Это задача о числе сочетаний из двух видов монет по четыре с повторениями.
способов.
6.В кондитерской имеется 5 разных сортов пирожных. Сколькими способами можно выбрать набор из 4 пирожных?
Решение: это задача о числе сочетаний из 5 видов пирожных по 4 с повторениями.
способов
7. Сколько всего чисел можно составить из цифр 1, 2, 3, 4, 5, в каждом из которых цифры расположены в неубывающем порядке?
Решение: это задача о числе сочетаний из 5 цифр по одному, по два, по три, по четыре и по пяти с повторениями в каждом случае.
; ; ;
;
Согласно правилу сложения: 5+15+35+70+126=251 чисел.
Решение: .
8. Решить уравнения а) ; б) .
Решение:a) ; ; ; ;
б) ; ; ; .
Тема 2