Алгебраические критерии устойчивости
Необходимое условие устойчивости
Характеристическое уравнение системы с помощью теоремы Виета может быть записано в виде
D(p) = aopn + a1pn-1 + a2pn-2 + ... + an = ao(p-p1)(p-p2)...(p-pn) = 0,
где p1, p2, ..., pn - корни этого уравнения. Если система устойчива, значит все корни левые, то есть вещественные части всех корней
отрицательны, что можно записать какai = -|ai| < 0. Подставим их в уравнение:
a0 (p + |a1|) (p + |a2| - j 2) (p + |a2| + j 2) ... = 0.
Перемножая комплексно сопряженные выражения, получим:
a0 (p + |a1|) ((p + |a2|)2 + ( 2)2) ... = 0.
После раскрытия скобок должно получиться выражение
a0 pn + a1 pn-1 + a2 pn-2 + ... + an = 0.
Так как в скобках нет ни одного отрицательного числа, то ни один из коэффициентов a0,a1,...,an не будет отрицательным. Поэтому необходимым условием устойчивости САУ является положительность всех коэффициентов характеристического уравнения: a0 > 0, a1 > 0, ... , an > 0. В дальнейшем будем рассматривать только уравнения, где a0 > 0. В противном случае уравнение домножается на -1.
Рассмотренное условие является необходиным, но не достаточным условием. Необходимые и достаточные условия дают алгебраические критерии Рауса и Гурвица.
Критерий Рауса
Раус предложил критерий устойчивости САУ в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:
1) в первой строке записываются коэффициенты уравнения с четными индексами в порядке их возрастания;
2) во второй строке - с нечетными;
3) остальные элементы таблицы определяется по формуле: ck,i = ck+ 1,i - 2 - ri ck + 1,i - 1, гдеri = c1,i - 2/c1,i - 1, i 3 - номер строки, k - номер столбца.
4) Число строк таблицы Рауса на единицу больше порядка характеристического уравнения.
Ri | i\k | ||||
- | c11 = a0 | c21 = a2 | c31 = a4 | ... | |
- | c12 = a1 | c22 = a3 | c32 = a5 | ... | |
r3 = c11/cc12 | c13 = c21-r3c22 | c23 = c31-r3c32 | c33 = c41-r3c42 | ... | |
r3 = c11/c12 | c14 = c22-r3c23 | c24 = c32-r4c33 | c34 = c42-r4c43 | ... | |
... | ... | ... | ... | ... | ... |
Критерий Рауса: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса c11, c12, c13,... были положительными. Если это не выполняется, то система неустойчива, а количество правых корней равно числу перемен знака в первом столбце.
Достоинство - критерий прост в использовании независимо от порядка характеристического уравнения. Он удобен для использования на ЭВМ. Его недостаток - малая наглядность, трудно судить о степени устойчивости системы, на сколько далеко отстоит она от границы устойчивости.
Критерий Гурвица
Гурвиц предложил другой критерий устойчивости. Из коэффициентов характеристического уравнения строится определитель Гурвица по алгоритму:
1) по главной диагонали слева направо выставляются все коэффициенты характеристического уравнения от a1 до an;
2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали сверху вниз;
3) на место коэффициентов с индексами меньше нуля или больше n ставятся нули.
Критерий Гурвица: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы все n диагональных миноров определителя Гурвица были положительны. Эти миноры называются определителями Гурвица.
Рассмотрим примеры применения критерия Гурвица:
1) n = 1 => уравнение динамики: a0p + a1 = 0. Определитель Гурвица: = 1 = a1 > 0 при a0 > 0, то есть условиие устойчивости:a0 > 0, a1 > 0;
2)n = 2 => уравнение динамики: a0p2 + a1p + a2 = 0. Определители Гурвица: 1 = a1 > 0, D2 = a1a2 - a0a3 = a1a2 > 0, так как a3 = 0, то есть условие устойчивости: a0 > 0, a1 > 0, a2 > 0;
3) n = 3 => уравнение динамики: a0p3 + a1p2 + a2p + a3 = 0. Определители Гурвица: 1 = a1 > 0, 2 = a1a2 - a0a3 > 0, 3 = a3 2 > 0, условие устойчивости: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a1a2 - a0a3 > 0;
Таким образом при n 2 положительность коэффициентов характеристического уравнения является необходимым и достаточным условием устойчивости САУ. При n > 2 появляются дополнительные условия.
Критерий Гурвица применяют при n 4. При больших порядках возрастает число определителей и процесс становится трудоемким. Имеется ряд модификаций данного критерия, расширяющие его возможности.
Недостаток критерия Гурвица - малая наглядность. Достоинство - удобен для реализации на ЭВМ. Его часто используют для определения влияния одного из параметров САУ на ее устойчивость. Так равенство нулю главного определителя n = an n-1 = 0 говорит о том, что система находится на границе устойчивости. При этом либо an = 0 - при выполнении остальных условий система находится на границе апериодической устойчивости, либо предпоследний минор n-1 = 0 - при положительности всех остальных миноров система находится на границе колебательной устойчивости. Параметры САУ определяют значения коэффициентов уравнения динамики, следовательно изменение любого параметра Ki влияет на значение определителя n-1. Исследуя это влияние можно найти, при каком значении Ki определитель n-1 станет равен нулю, а потом - отрицательным (рис.67). Это и будет предельное значение исследуемого параметра, после которого система становится неустойчивой.
Вопросы
- Что понимают под устойчивостью САУ в малом и в большом?
- Какой вид имеет решение уравнения динамики САУ?
- Как найти вынужденную составляющую решения уравнения динамики САУ?
- Какой вид имеет свободная составляющая решения уравнения динамики САУ?
- Что такое характеристическое уравнение?
- Какой вид имеют корни характеристического уравнения?
- Чем отличаются правые и левые корни характеристического уравнения?
- Сформулируйте условие устойчивости систем по Ляпунову.
- Что такое граница устойчивости?
- Что такое критерии устойчивости?
- Сформулируйте необходимое условие устойчивости САУ.
- Сформулируйте критерий Рауса.
- Сформулируйте критерий Гурвица.
- В чем достоинства и недостатки алгебраических критериев устойчивости?