Теория подобия в гидромеханике

Для изучения сложных гидродинамических явлений прибегают к модельному эксперименту. Результаты таких экспериментов могут быть перенесены на натуру лишь тогда, когда явления при моделировании и в натурных условиях подобны. Различают три вида подобия: геометрическое, кинематическое и динамическое.

Для геометрического подобия требуется, чтобы отношение сходственных линейных размеров натуры L1 и модели L2 было равно постоянной величине

L1/ L2 = S11/2/ S21/2 = V11/3/ V21/3 = Cl,

где S1, S2 - сходственные площади натуры и модели; V1 ,V2 -сходственные объемы натуры и модели; Cl - постоянная геометрического подобия.

Кинематическое подобие возможно, если отношение промежутков времени, в течение которых сходственные точки описывают геометрически подобные отрезки траекторий, равно постоянной величине и, кроме того, выполняется геометрическое подобие натуры и

модели. Кинематическое подобие характеризуется двумя постоянными подобия - геометрической Cl и времени Ct = t1/ t2; все остальные его постоянные являются производными от указанных двух. Например, для отношения скоростей и ускорений можно записать:

υ1/ υ 2 = Cυ = Cl / Ct ; α1/ α 2 = C α = C υ / Ct = Cl / Ct2 = Cυ2/ Cl

При динамическом подобии требуется, чтобы отношение сходственных сил и натуры и модели было равно постоянной величине. Для выполнения этого условия достаточно, чтобы при наличии кинематического подобия отношение сходственных масс натуры и модели было равно постоянной величине Сm:

Сm = m1 / m2 = ρ1V1/ ρ2V2 = Cρ Cl3

где ρ1, ρ2 - плотности сходственных объемов натуры и модели;

Сm, Cρ, Cl - постоянные подобия.

Для отношения сходственных сил можно записать:

F1/F2 = m1 α1 / m2 α2 = Cρ Cl3 Cυ 2 / Cl = Cρ Cl2 Cυ 2,

Откуда следует общий закон механического подобия:

F1/ ρ1 υ12 S1 = F2 / ρ2 υ22 S2 .

Поэтому любое механическое усилие в жидкости можно представить в виде:

F = 0,5 ζ ρ υ2 S,

где ζ - безразмерный коэффициент силы, который одинаков для динамически подобных явлений.

Кроме общих условий динамического подобия для сил, обусловленных вязкостью жидкости, должно соблюдаться равенство чисел Рейнольдса (подобие по Рейнольдсу)

υ1 L1/ ν1 = υ2 L2/ ν2 = Re

12 - кинематические вязкости жидкостей, в которых испытываются натура и модель), а для сил обусловленных весомостью жидкости - равенством чисел Фруда (подобие по Фруду)

υ1 / Теория подобия в гидромеханике - student2.ru = υ2 / Теория подобия в гидромеханике - student2.ru = Fr.

Основы теории крыла

Гребные винты, рули, и другие судовые устройства имеют общий принцип действия, рассматриваемый в теории крыла. Для изучения работы этих устройств необходимо иметь представление о силах, действующих на крыло при движении.

Геометрические характеристики крыла определяются (рис.5.):

- площадью крыла F и формой проекции крыла в плане;

- длиной (размахом) крыла l - размером крыла в направлении,

перпендикулярном набегающему потоку;

- профилем крыла - сечением крыла плоскостью, перпендикулярной его размаху;

- хордой крыла b (шириной крыла) – отрезком прямой, соединяющей крайние точки профиля; при переменной по размаху крыла хорде вводится понятие средней хорды:

bср = F / l;

- максимальной толщиной профиля t – расстоянием между крайними точками профиля перпендикулярно хорде.

Часто пользуются безразмерными геометрическими характеристиками крыла:

- удлинением (относительным размахом) крыла λ = l /bср = l2 /F или (для прямоугольного крыла) λ = l / b;

- относительной толщиной Теория подобия в гидромеханике - student2.ru = 100 t / b - отношением наибольшей толщины профиля к длине хорды.

       
  Теория подобия в гидромеханике - student2.ru   Теория подобия в гидромеханике - student2.ru
 

Рис.5. Геометрические характеристики крыла

Гидродинамические характеристики крыла (рис.6.) определяются его геометрией и углом α между хордой профиля крыла и направлением скорости движения его, называемым углом атаки. Поток, набегающий на крыло со скоростью υ под углом атаки α, на верхней поверхности крыла ускоряется, а на нижней - замедляется. Согласно уравнению Бернулли, на нижней поверхности создается повышенное давление, а на верхней - пониженное. Кроме сил давления, на движущееся в вязкой жидкости крыло действуют касательные силы трения. Силы гидродинамического давления и касательные силы трения приводятся к главному вектору гидродинамических сил Р.

Теория подобия в гидромеханике - student2.ru

Рис.6. Схема действия потока жидкости на крыло

Спроектировав главный вектор на направление движения и перпендикулярное ему направление, получим силу профильного Рx и подъемную силу крыла Ру:

Рx = Р cos(Р, x); Ру= Р cos(Р, y).

Также можно определить составляющие силы Р направленных по нормали и по касательной к крылу. Нормальная составляющая силы Р:

Рn = Рy cos α + Рх sin α;

Тангенциальная составляющая силы Р:

Рt = Рx cos α - Рy sin α;

Точка приложения силы Р называется центром давления. Центр давления отстоит от передней кромки крыла на расстоянии хр. Момент относительно передней кромки крыла М = Рn хр.

Отношение подъемной силы крыла к его сопротивлению называется коэффициентом гидродинамического качества крыла

К = Рy / Рх = С y / Сх.

Коэффициент обратного качества ε = Рх/ Рy.

В соответствии с общей формулой для гидродинамических сил определяется силы и моменты, действующих на крыло при движении:

Рy = 0,5 С y ρ υ2 F; Рx = 0,5 С x ρ υ2 F;

Рn = 0,5 С n ρ υ2 F; Рt = 0,5 С t ρ υ2 F;

M = 0,5 С m ρ υ2 F b,

где Сy , Сx , Сn , Сt , Сm - безразмерные коэффициенты подъемной силы, сопротивления, нормальной силы, касательной силы и момента. Отношение абсциссы центра давления крыла к длине хорды хр / b = С р, называется коэффициентом центра давления крыла, тогда

С m = С n С р.

Безразмерные коэффициенты определяют гидродинамические характеристики крыла. Обычно задают независимые коэффициенты: Сy, Сx , Сm р), так как остальные коэффициенты являются зависимыми.

Для данного крыла коэффициенты Сyx , Сnt , Срm , К(ε) зависят от угла атаки α, чисел Рейнольдса Re, Фруда Fr, а также от условий движения крыла (в безграничной жидкости, вблизи свободной поверхности жидкости, кавитации и т.п.). Они определяются теоретическим или чаще экспериментальным путем, поэтому для геометрически подобных крыльев они задаются в функции от угла атаки при установившемся обтекании потоком жидкости с некоторым числом Re. Значения гидродинамических коэффициентов крыла, в общем случае завися от числа Re, однако, при обтекании крыла без кавитации безграничным потоком несжимаемой жидкости с числом Re > (1,31,5) 106 коэффициенты оказываются в автомодельной области и их можно считать независимыми от Re.

На рис.7. приведены кривые зависимости гидродинамических характеристик крыла от углов атаки. Из рисунка видно, что коэффициент подъемной силы с увеличением угла атаки вначале возрастает, а затем, достигнув максимума при так называемом критическом угле атаки αкр, начинает резко падать. Для симметричного профиля подъемная сила становится равной нулю при нулевом угле атаки, для несимметричного -при значениях α, отличных от нуля. Угол атаки, при котором Сy обращается в нуль, называют углом нулевой подъемной силы α0, а угол αi = α + α0 - гидродинамическим углом атаки. Направление потока, соответствующее углу α0, называется направлением нулевой подъемной силы.

Теория подобия в гидромеханике - student2.ru

Рис.7. Кривые зависимости гидроди-намических характеристик крыла от углов атаки

Из рис.7. следует, что существует такое значение угла атаки, при котором коэффициент обратного качества минимальный. Этот угол называют наивыгоднейшим углом атаки αорt.

 
  Теория подобия в гидромеханике - student2.ru

На гидродинамические характеристики крыла сильно влияют границы потока (рис.8). Влияние твердой стенки под крылом приводит к увеличению коэффициента его подъемной силы, а по мере уменьшения погружения крыла к заметному снижению величины С y.

Рис.8. Графики влияния твердой стенки и свободной поверхности жидкости на С y прямоугольных крыльев.

Глава 3

Геометрия корпуса судна

Теоретический чертеж

Ввиду сложности формы обводы корпуса задаются графически в виде теоретического чертежа. На теоретическом чертеже изображены проекции на главные взаимно перпендикулярные плоскости линии пересечения теоретической поверхности корпуса с плоскостями, параллельными главным плоскостям. Под теоретической поверхностью понимают внутреннюю поверхность обшивки корпуса (без учета толщины обшивки и выступающих частей). Исключения составляют суда с деревянными и пластмассовыми корпусами, для которых на теоретическом чертеже изображают наружную поверхность корпуса.

В качестве главных плоскостей принимают:

- диаметральную плоскость (ДП) - вертикальную продольную плоскость, делящую корпус судна на две симметричные части - правую (правый борт) и левую (левый борт);

- плоскость мидель шпангоута ( Теория подобия в гидромеханике - student2.ru ) - вертикальную поперечную плоскость, проходящую по середине длины судна и делящую корпус на носовую и кормовую части;

- основную плоскость (ОП) - горизонтальную плоскость, проходящую через нижнюю точку теоретической поверхности корпуса судна в плоскости мидель-шпангоута.

Линии пересечения теоретической поверхности корпуса с плоскостями параллельным ДП называют батоксами, с плоскостями параллельными ОП - теоретическими ватерлиниями (ВЛ), с плоскостями, параллельными плоскости мидель–шпангоута - теоретическими шпангоутами.

Линии пересечения ОП с ДП и ОП с плоскостью мидель-шпангоута дают продольную и поперечную основные линии.

Пересечение ДП с корпусом образуют линию киля, форштевня, ахтерштевня и верхней палубы.

Теория подобия в гидромеханике - student2.ru
Совокупность проекций батоксов, теоретических ватерлиний и шпангоутов на ДП называется боком, на ОП - полуширотой, на плоскость мидель - шпангоута - корпусом. Эти три вида и составляют теоретический чертеж судна (рис. 9).

Рис.9. Теоретический чертеж судна

Каждое сечение проектируется на одну из плоскостей в своем истинном виде, а на две другие в виде прямых линий. Например, на виде «бок» в истинном виде представлены батоксы, а теоретические шпангоуты и ватерлинии в виде прямых. Из последних выделяют

конструктивную ватерлинию (КВЛ), по которую судно плавает с полной нагрузкой по проектную осадку. Любая другая ватерлиния, соответствующая конкретному случаю нагрузки называется действующей (расчетной) и обозначается (WL).

Число теоретических шпангоутов, как правило, принимается равными 11 или 21, которые образуют соответственно 10 или 20 теоретических шпаций.

 
  Теория подобия в гидромеханике - student2.ru

Линии пересечения диаметральной плоскости с вертикальными поперечными плоскостями, проходящими через крайнюю носовую точку КВЛ и точку ее пересечения с осью баллера, называется соответственно носовым (НП) и кормовым (КП) перпендикулярами. При отсутствии баллера кормовой перпендикуляр получают, проводя вертикальную поперечную плоскость на расстоянии 97% длины судна по КВЛ от носового перпендикуляра.

Рис.10. Главные плоскости теоретического чертежа

Для расчета статики судна используют прямоугольную систему координат oxyz (рис. 10). Координатные плоскости системы oxyz совпадают с диаметральной плоскостью (ДП) xoz, плоскостью мидель - шпангоута yoz и основной плоскостью xoy. Начало координат располагают в точке 0, а оси направляют соответственно в нос, на правый борт и вертикально вверх.

Теоретический чертеж предназначен для наглядного изображения обводов корпуса, расчетного определения характеристик эксплуатационных качеств судна, разработки проектных чертежей.

Расчеты мореходных качеств судна в условиях его эксплуатации проводятся по документации, в которой используются данные, полученные из теоретического чертежа. Теоретический чертеж применяется при проведении ремонтных работ по корпусу, при доковании судна.

Наши рекомендации