Приведение статических и динамических нагрузок к валу двигателя

Обычно двигатель приводит в действие производственный механизм через систему передач, отдельные элементы которой движутся с различными скоростями.

Механическая часть электропривода может представлять собой сложную кинематическую цепь с большим числом движущихся элементов.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru Расчетную схему механической части привода можно свести к одному обобщенному жесткому механическому звену, имеющему эквивалентную массу с моментом инерции J, на которую воздействует электромагнитный момент двигателя М и суммарный приведенный к валу двигателя момент сопротивления (статический момент) Мс, включающий все механические потери в системе, в том числе механические потери в двигателе.

Рассмотрим методы приведения различного вида движения к такой двухмассовой модели.

wдв=wрм.

Различны: J1, J2, …, Jn; m1, m2, …, mk;

w1, w2, …, wn; v1, v2, …, vk.

Общим принципом приведения нагрузок к валу двигателя является закон сохранения энергии (кинетической и потенциальной).

Приведение статических и динамических нагрузок к валу двигателя - student2.ru Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Закон сохранения энергии:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Dt – интервал времени подъема.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Приведение статических и динамических нагрузок к валу двигателя - student2.ru , где Р – вес груза; R – радиус обработки; i – передаточное число редуктора.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru - радиус приведения.

Приведение моментов инерции – это приведение динамических нагрузок к валу двигателя.

При приведении динамических нагрузок определяем приведенный момент инерции механизма из условия сохранения кинетической энергии в приведенных массах, равной энергии движущихся частей рабочей машины.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Приведение статических и динамических нагрузок к валу двигателя - student2.ru , но Приведение статических и динамических нагрузок к валу двигателя - student2.ru и Приведение статических и динамических нагрузок к валу двигателя - student2.ru , тогда Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Таким образом, Jдв>>Jпр.

Электромеханические свойства двигателя

Электромеханические свойства двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Приведение статических и динамических нагрузок к валу двигателя - student2.ru Приведение статических и динамических нагрузок к валу двигателя - student2.ru Приведение статических и динамических нагрузок к валу двигателя - student2.ru Приведение статических и динамических нагрузок к валу двигателя - student2.ru Обычная схема включения двигателя постоянного тока независимого возбуждения представлена на рис. 1. Якорь двигателя М и его обмотка возбуждения ОВ обычно получают питание от разных, независимых друг от друга источников (преобразователей) напряжения U и Uв, что позволяет отдельно регулировать напряжение на якоре двигателя и на обмотке возбуждения и выполнять их на разное номинальное напряжение. Лишь при наличии сети постоянного тока или при нерегулируемом преобразователе в якорной цепи обмотка возбуждения питается от того же источника напряжения, что и якорь двигателя. Но и в этом случае ток возбуждения Iв не зависит от тока I якоря двигателя.

Направления тока I и ЭДС вращения двигателя Е, показанные на рис. 1, соответствуют двигательному режиму работы, когда электрическая энергия потребляется двигателем из сети (от источника напряжения U) и преобразуется в механическую энергию, мощность которой равна Р = Мω. Зависимость же между М и ω двигателя определяется его механической характеристикой.

Аналитическое выражение механической характеристики двигателя может быть получено из уравнения равновесия напряжений, составленного для якорной цепи схемы (рис. 1). При установившемся режиме работы двигателя приложенное напряжение U, В, уравновешивается падением напряжения в якорной цепи IR и наведенной в якоре ЭДС вращения Е, В, т. е.

U = IR + E, ( 1)

здесь I — ток в якорной цепи двигателя, A; R — суммарное сопротивление якорной цепи, Ом, включающее внешнее сопротивление резистора Rp и внутреннее сопротивле­ние якоря двигателя Rя (при наличии дополнительных полюсов учитывается и их сопротивление);

E=cФω, (2)

где c — коэффициент, зависящий от конструктивных данных двигателя, c = pN/2na (p — число пар полюсов двигателя; N — число активных проводников . обмотки якоря; а — число пар параллельных ветвей обмотки якоря); Ф и ω — соответственно магнитный поток, Вб, и угловая скорость двигателя, рад/с.

Если в (1) вместо Е подставим ее значение Е из (2), то получим уравнение для скорости двигателя

Приведение статических и динамических нагрузок к валу двигателя - student2.ru , (3)

Уравнение (3) представляет собой зависимость скорости двигателя от тока якоря. Такую зависимость Приведение статических и динамических нагрузок к валу двигателя - student2.ru называют электромеханической характеристикой двигателя.

Электрическая схема замещения (с учетом противоЭДС)

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Р эл = UdIя > 0

R – активное сопротивление обмотки;

L – индуктивность якорной цепи.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Полная система уравнений, описывающих ДПТ НВ:
Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Уравнение движения привода: Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Для получения уравнения механической характеристики необходимо подставить (3) значение тока I, найденное из (4), получим выражение для механической характеристики:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru (5)

или

Приведение статических и динамических нагрузок к валу двигателя - student2.ru (6)

где

k=сФ (7)

Коэффициент k принимается постоянным, не зависящим от нагрузки, если у двигателя с независимым возбуждением имеется компенсационная обмотка. Он может считаться неизменным, если для обычных двигателей пренебречь реакцией якоря.

Из (5) видно, что механическая характеристика двигателя ω=f(М) при неизменных параметрах U, Ф и R представляется прямой линией.

На рис. 2 представлены механические характеристики двигателя независимого возбуждения для различных сопротивлений якорной цепи. Как видно из (5), при М = 0 все характеристики проходят через одну точку, лежащую на оси ординат. Угловая скорость в этой точке имеет вполне определенное значение, не зависящее от сопротивления якорной цепи. Эта скорость носит название скорости идеального холостого хода и определяется выражением Приведение статических и динамических нагрузок к валу двигателя - student2.ru

При скорости идеального холостого хода, когда ток в якорной цепи равен нулю, ЭДС якоря, направленная навстречу приложенному напряжению, равна ему по абсолютному значению. Если двигатель до приложения нагрузки работал с угловой скоростью ω0, то при появлении на его валу момента сопротивления угловая скорость будет снижаться. Следствием этого будет уменьшение ЭДС вращения Е согласно (2) и увеличение тока якоря в соответствии с (1) и момента двигателя по (4). Угловая скорость будет снижаться до тех пор, пока момент двигателя не сравняется с моментом сопротивления. Разность значений установившихся скоростей электропривода до и после приложения заданной статической нагрузки называется статическим падением (перепадом) скорости электропривода. Второй член (6) характеризует собой статическое падение угловой скорости (перепад) относительно угловой скорости идеального холостого хода:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Таким образом, уравнение для скорости двигателя может быть записано так:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Верхняя характеристика из семейства, приведенного на рис.2 называется естественной. Естественной характеристикой называется такая характеристика двигателя, которая получается при отсутствии внешних резисторов в якорной цепи и номинальных значениях напряжения и магнитного потока двигателя.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Мхх – момент холостого хода;

wхх – скорость холостого хода;

Мном – номинальный момент.

Мхх@0,05Мном.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru Естественная характеристика самая жесткая (соответствует b). При уменьшении b возрастает Dw, то есть характеристика менее жесткая (соответствует b1, b2).

Мкз может формироваться лишь аварийно, при прямом пуске двигателя: Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Приведение статических и динамических нагрузок к валу двигателя - student2.ru w=0 точка короткого замыкания. Мкз=(10…20)Мном. Такой режим не допустим даже кратковременно, Мк.з.>>λМном

Физические ограничения Мдоп:

Длина дуги пропорциональна квадрату тока: ℓдуги»Iя2.

Приведение статических и динамических нагрузок к валу двигателя - student2.ru При Мкз дуга перекрывает промежуток между щетками двигателя, что соответствует короткому замыканию (это называется перекрытием коллектора или круговым огнем по коллектору и, как следствие, двигатель выходит из строя).

Реальная перегрузочная способность ДПТ Приведение статических и динамических нагрузок к валу двигателя - student2.ru .

l≤2…2,5 – превышение можно допускать лишь на очень короткий срок.

Но существуют специальные серии двигателей с полым якорем, с печатным якорем, которые допускают перегрузки до l=5…7.

Ламели изготовляются из меди.

2.2. Приведение статических и динамических нагрузок к валу двигателя - student2.ru Энергетика ДПТ НВ.

Потери в двигателе пропорциональны снижению скорости Δω под действием нагрузки Мс

Докажем это утверждение.

Пусть двигатель работает под нагрузкой Мсном на механической характеристике А'В.

Рабочая точка В. Оценим потери в двигателе.

Отдаваемая механическая мощность (см. рис): Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Потребляемая из сети электромагнитная мощность:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Здесь использовано: Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Потери в двигателе Приведение статических и динамических нагрузок к валу двигателя - student2.ru

В масштабе рисунка, механическая мощность равна площади прямоугольника В'ВСО:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru ,

а соответственно, потребляемая мощность и потери:

Приведение статических и динамических нагрузок к валу двигателя - student2.ru Приведение статических и динамических нагрузок к валу двигателя - student2.ru

Площадь потерь заштрихована на рисунке.

Таким образом, потери ΔР тем больше, чем больше просадка скорости Δω=АВ под нагрузкой относительно скорости идеального холостого хода. Этими представлениями будем пользоваться для сопоставления энергетики различных способов регулирования скорости двигателя.

Самая плохая энергетика – точка С:

Рмех=wс∙Мном=0.

Вся потребляемая энергия переводится в тепло. Рэл=Uном∙I ном.

Чем мягче характеристика двигателя, тем больше в нем внутренние потери.

Наши рекомендации