Исследование степенного ряда на сходимость.
Переходим к рассмотрению типового задания.
Пример: Найти область сходимости степенного ряда
Решение: Задание часто формулируют эквивалентно: Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала.
1) На первом этапе находим радиус сходимости ряда по формуле:
2) Записываем интервал сходимости ряда :
.
3) Проверяем сходимость ряда на концах интервала:
а) Рассматриваем правый конец интервала , подставляем это значение в наш степенной ряд :
При – сходится (случай обобщенного гармонического ряда).
б) Берём левый конец интервала и подставляем его в наш степенной ряд :
При
Получен числовой знакочередующийся ряд, и нам нужно исследовать его на сходимость.
Используем признак Лейбница:
1) Члены ряда убывают по модулю: каждый следующий член ряда по модулю меньше, чем предыдущий, значит, убывание монотонно – первое условие выполняется.
2) – второе условие выполняется.
Вывод: ряд сходится.
Исследуем ряд на абсолютную сходимость:
– сходится (случай обобщенного гармонического ряда).
Таким образом, полученный числовой ряд сходится абсолютно.
Таким образом, степенной ряд сходится на обоих концах найденного интервала.
Ответ: Область сходимости исследуемого степенного ряда:
Имеет право на жизнь и другое оформление ответа: Ряд сходится, если
!!! Иногда в условии задачи требуют указать радиус сходимости. Очевидно, что в рассмотренном примере .
Пример: Найти область сходимости ряда .
Решение: Найдем радиус сходимости данного ряда.
Итак, ряд сходится при
Раскрываем модуль:
И прибавляем ко всем частям единицу:
– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость степенного ряда на концах найденного интервала:
1) Если x=-8, то получается следующий числовой ряд:
Получен числовой знакочередующийся ряд, и нам нужно исследовать его на сходимость.
Используем признак Лейбница:
1) Члены ряда убывают по модулю: каждый следующий член ряда по модулю меньше, чем предыдущий, значит, убывание монотонно – первое условие выполняется.
2) – второе условие выполняется.
Вывод: ряд сходится.
Исследуем ряд на абсолютную сходимость.
Составим ряд из абсолютных членов:
.
По всем признакам для полученного числового ряда следует применить предельный признак сравнения.
Определяем старшую степень знаменателя, для этого мысленно или на черновике отбрасываем под корнем всё, кроме самого старшего слагаемого: . Таким образом, старшая степень знаменателя равна . Старшая степень числителя, очевидно, равна 1. Из старшей степени знаменателя вычитаем старшую степень числителя: .
Таким образом, наш ряд нужно сравнить со сходящимся рядом .
Используем предельный признак сравнения:
Получено конечное, отличное от нуля число, значит, ряд сходится вместе с рядом .
Таким образом, полученный числовой ряд сходится абсолютно.
2) Что происходит на другом конце интервала?
При x=10. Получаем ряд
– сходится (Получился точно такой же числовой ряд, сходимость которого мы только что доказали).
Ответ: область сходимости исследуемого степенного ряда:
или