Обобщенный гармонический ряд
Теорема .
Если члены знакоположительного ряда могут быть представлены как числовые значения некоторой непрерывной монотонно убывающей на промежутке функции так, что , то:
1) если сходится, то сходится и ряд
2) если расходится, то расходится также и ряд
Рассмотрим криволинейную трапецию, ограниченную сверху графиком функции y=f(x), основанием которой служит отрезок оси Ох от х=1 до х= n.
Построим входящие и выходящие прямоугольники, основаниями которых служат отрезки [1;2],[2;3],... Учитывая геометрический смысл определенного интеграла, запишем:
или
или
Случай 1 . Несобственный интеграл сходится, т.е. . Поскольку , то с учетом неравенства имеем: , т.е. . Так как последовательность частичных сумм монотонно возрастает и ограничена сверху (числом ), то, по признаку существования предела, имеет предел.
Следовательно, ряд сходится.
Случай 2. Несобственный интеграл расходится. Тогда и интегралы неограниченно возрастают при . Учитывая, что , получаем, что при . Следовательно, данный ряд расходится.
Ряд ,
где p>0 – действительное число, называется обобщенным гармоническим рядом . Для исследования ряда на сходимость применим интегральный признак Коши.
Рассмотрим функцию . Эта функция непрерывна, монотонно убывает на промежутке и . При имеем:
При p=1 имеем гармонический ряд , который расходится. Итак, ряд сходится при , расходится при . В частности, ряд сходится.
Знакочередующиеся и знакопеременные ряды
Знакочередующиеся ряды
Знакочередующимся рядом называется ряд вида
,
где для всех .
Теорема(достаточный признак Лейбница сходимости знакочередующегося ряда).
Знакочередующийся ряд сходится, если:
1. Последовательность абсолютных величин членов ряда монотонно убывает, т.е.
2. Общий член ряда стремится к нулю:
При этом сумма S ряда удовлетворяет неравенствам
Рассмотрим сначала частичную сумму четного числа (2m ) членов ряда. Имеем
Выражение в каждой скобке, согласно первому условию теоремы, положительно. Следовательно, сумма и возрастает с возрастанием номера 2m.
С другой стороны, можно переписать так:
Легко видеть, что . Таким образом, последовательность возрастает и ограничена сверху. Следовательно, она имеет предел , причем .
Рассмотрим теперь частичные суммы нечетного числа ( 2m+1) членов ряда. Очевидно, что . Отсюда следует, что , т.к. в силу второго условия теоремы. Итак, как при четном n , так и при нечетном n . Следовательно, ряд сходится, причем .
Общий достаточный признак сходимости знакопеременных рядов
Знакочередующийся ряд является частным случаем знакопеременного ряда. Числовой ряд , содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называетсязнакопеременным.
Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.
Теорема.
Пусть дан знакопеременный ряд
Если сходится ряд ,
составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд .
Рассмотрим вспомогательный ряд, составленный из членов рядов и :
Очевидно, что для всех . Но ряд сходится в силу условия теоремы и свойства 1 числовых рядов. Следовательно, на основании признака сравнения сходится и ряд . Поскольку данный знакопеременный ряд представляет собой разность двух сходящихся рядов
то, на основании свойства 2 числовых рядов, он сходится.
Обратное утверждение неверно.