Межгалактические пространства

Кроме нашей Галактики существуют и другие звездные скопления, например туманность Андромеды, которая при наблюдении в сильный телескоп выглядит как скопления звезд, расположенных в виде такой же дискообразной спирали, как наша Галактика. Количество таких галактик очень велико. Расстояние до них может быть оценено исходя из кажущейся яркости объектов. Например, полная яркость туманности Андромеды приблизительно такая же, как у средней звезды, удаленной на 10 световых лет. Мощные телескопы показывают, что звезд в этой галактике примерно столько же, как и в нашей,- около 50 млрд. В таком случае эта туманность в 50 млрд раз ярче отдельной звезды нашей Галактики. Тогда расстояние до туманности Андромеды должно быть в корень из (50 х 109) раз больше, чем до ближайших звезд, т.е. определяется как произведение 10 световых лет на корень из (50 х 109), что дает около 2 млн световых лет. Получается, что расстояние от нашей Галактики до соседней приблизительно в 20 раз больше диаметра нашей Галактики. Свет, приходящий от туманности Андромеды, покинул ее тогда, когда нашу Землю населяли еще не люди, а их обезьяноподобные предки. Множество спиральных туманностей можно увидеть с помощью телескопов. Известно о миллионах таких туманностей, и расстояния между ними достигают нескольких миллионов световых лет.

Возникает вопрос: а есть ли предел у самой Вселенной? На него помогает ответить открытый в первой половине XX в. факт «разбегания» галактик. Анализ спектров галактик показал: чем дальше находятся от нас галактики, тем быстрее они удаляются. Дело в том, что при изучении спектров звезд было выявлено отсутствие в них определенных частот - темные линии в спектре, которые расположены как раз на тех местах, где находился бы свет соответствующей частоты, если бы он не поглощался холодным газом на поверхности звезд. Например, в большинстве звездных спектров наблюдаются две темные линии в фиолетовой части, указывающие на поглощение газообразным кальцием. Те же темные линии в спектрах наблюдаются в спектрах галактик, так как их излучение представляет собой сумму излучения всех входящих в них звезд. Однако эти линии находятся не при ожидаемой частоте, а смещены в сторону меньших частот. Такое смещение частоты можно истолковать как следствие движения объекта относительно наблюдателя, поскольку при удалении источника света от наблюдателя его частота уменьшается (можно сравнить со звуком автомобильного сигнала, который кажется ниже, когда автомобиль удаляется от нас). Смещение частоты пропорционально скорости и поэтому может служить для определения скорости удаляющихся объектов.
Смещение частоты света от отдаленных галактик трактуют как доказательство того, что они удаляются от нас. Скорость этого движения пропорциональна расстоянию до галактики. Движение ближайшей галактики, например туманности Андромеды, почти невозможно обнаружить, но галактики, отстоящие от нас на 100 млн световых лет, удаляются со скоростью около 3000 км/с. Связь между скоростью и расстоянием впервые установил американский астроном Э.П. Хаббл в 1929 г. На рис. 5.9 представлена последовательность оценок расстояний, расположенных в порядке их возрастания. В настоящее время наиболее сильные телескопы позволяют различать галактики, удаленные на 3 млрд световых лет и «убегающие» от нас со скоростью 90 000 км/с, что составляет почти треть скорости света. В начале 1960-х гг. были открыты квазары. Самый далекий из известных ныне квазаров находится от нас на расстоянии около 8 млрд световых лет.

55.Малые интервалы времени. Сравнительно малой и хорошо воспринимаемой человеком единицей времени является 1 с - это приблизительно интервал между двумя ударами сердца. Наиболее короткий промежуток времени, воспринимаемый человеком, составляет 0,1 с (длительность щелчка пальцами). Также известна способность глаза различать отдельные изображения. Так, если кинопленку протягивать со скоростью менее 14 кадров в 1 с, то человек различит отдельные кадры. Смена изображения со скоростью 24 кадра в 1 с приводит к возможности видеть непрерывное изменение явлений, а 25-й кадр уже не воспринимается глазом.
Развитие науки и человеческой практики привело к потребности измерять время, составляющее тысячные, миллионные, миллиардные и даже биллионные доли секунды. Например, в течение 1 с бегун продвигается на 5—10 м и совершает много сложных движений, из которых каждое длится лишь сотые доли секунды; от правильности построения этих движений зависит его победа.Для определения географических координат, в первую очередь долготы местности, необходимо точно знать время в измеряемой точке. Ошибка в отсчете времени, равная 1 мин, при определении долготы на широте экватора соответствует искажению расстояния на 27,6 км, ошибка в 1 с влечет за собой искажение на 460 м и ошибка в 0,001 с - на 0,46 м Также, в геологии обсуждается проблема перемещения одних материков по отношению к другим.Чтобы измерить перемещение одной точки по отношению к другой на земном шаре, следует производить замеры в течение нескольких лет, обеспечивая погрешность определения моментов времени порядка тысячных долей секунды. Для того чтобы измерять время, требуется выбрать систему отсчета, научиться хранить и передавать точное время. Долгие годы единственной системой отсчета было вращение Земли вокруг своей оси и вокруг Солнца, но оказалось, что этот эталон времени не всегда достаточно точен.Поэтому в 1960-х гг. Международный комитет мер и весов принял решение использовать в качестве эталона астрономические атомно-лучевые цезиевые часы. Современные технологии, основанные на измерении колебаний атомов, позволяют достигать точности в пределах 10-12 - 10-14с, т.е. с максимальной ошибкой в 1 с при измерении интервалов от 30 тыс. до 3 млн лет.
Для изучения быстрых процессов существует достаточно большое количество методов: специальная киносъемка, оптические устройства, электронные измерительные схемы и т.д. Для исследования ряда чрезвычайно быстрых ядерных процессов применяются различного типа счетчики (Гейгера - Мюллера). Оказалось, что скорость движения молнии составляет около 0,1 скорости света, причем молния движется толчками: сначала она пробивает перед собой узкий проводящий канал, электризуя окружающий воздух, потом по этому каналу устремляется основной разряд, расширяющий его, затем вновь пробивается узкий проводящий канал и т.д.
Для фиксации быстрых явлений используют киносъемку.Для получения замедленной съемки скорость движения ленты в киносъемочном аппарате увеличивается до 120-240 кадров в 1 с; при демонстрации такого фильма со скоростью 24 кадра в 1 с движения всех тел представляются замедленными.Этот метод киносъемки позволил выявить особенности ряда процессов в живой и неживой природе: процессы разрушения и деформации различных материалов; разрушение почвы при падении капель дождя; особенности полета насекомых;и т.п.
Еще более быстродействующие приборы потребовались при изучении элементарных частиц, атомного ядра и ядерных реакций. Пример очень быстрых процессов — переход возбужденного ядра в нормальное состояние, при котором испускаются гамма-кванты.
Современные приборы позволяют прямыми методами измерять промежутки времени около 10-13 с. Более короткие промежутки, в течение которых протекают некоторые ядерные процессы, были получены на основе наблюдения косвенных признаков и теоретических расчетов. Так, в 1950-х гг. была открыта целая группа относительно тяжелых и чрезвычайно короткоживущих частиц - резонансов. Их открытие связано с разработкой специальной измерительной техники — пузырьковой камеры, представляющей собой сосуд со смотровыми окнами, заполненный жидким водородом. Пролетая через такую камеру, заряженная частица создает на своем пути цепь пузырьков газообразного водорода - видимый след, который можно наблюдать и фотографировать.

Наши рекомендации