II. Устные упражнения. III. Тренировочные упражнения
1. Вычислить:
3. № 687, 691, 688 (а, б, в).
III. Тренировочные упражнения.
1. На доске прикреплена ромашка, на лепестках которой с обратной стороны записаны задания из № 675 (б), 676 (б), 679 (а), 679 (б), 678 (б), 677 (б), 683 и такое задание:
Выразите m из формулы а = 150 : m + 1 (всего 8 лепестков).
(4 человека вызываются к доске, после ответа одного вызываются по одному; можно включить дополнительный вопрос).
2. На повторение № 693 (б, г).
3. Самостоятельная работа на оценку:
Вариант I – № 699 (1); вычислить: (23 + 52) × 3.
Вариант II – № 699 (2); вычислить: (62 + 33) : 21
IV. Итог урока.
1. Повторить все формулы.
2. Какие формулы нужно использовать при решении домашнего задания № 702, 703.
V. Домашнее задание. п. 17, повторить п. 7, 8; № 702, 703, 707 (в, г), 708 (б).
Урок № 67
Площадь. Площадь прямоугольника (п. 18, ч. 1)
Цели:сформировать понятия квадратного сантиметра, площади фигуры; научить находить площадь прямоугольника, сложной фигуры, научить определять равные фигуры.
Оборудование: квадрат со стороной 1 см; раздаточный материал (по две фигуры, разбитые на кв. сантиметры); демонстрационные равные фигуры.
Ход урока
I. Проверка домашнего задания.
Консультанты до урока проверили домашние работы у учащихся и докладывают о их выполнении.
II. Устные упражнения.
1. Восстановить цепочку вычислений.
2. (70 : 5 +2) × 4 – 64 Результат разделить на 11.
(48 : 4 – 2) × 9 : 45 + 18 Результат возвести в квадрат.
3. Можно ли указать число, которое не является корнем уравнения:
а) х : х = 1; б) 0 : х = 0; в) m : 0 = 0; г) u × 1 = u?
4. Наименьшее четырехзначное число уменьшите на 100. Какой получится результат?
III. Изучение нового материала.
1) Что такое квадратный сантиметр?
2) Как найти площадь фигуры?
3) Рассмотреть примеры рис. 62, 63; найти площади фигур, лежащих на парте у учащихся.
4) S – площадь прямоугольника, а – длина, b – ширина.
S = аb.
5) Определение равных фигур (продемонстрировать).
6) Каковы площади равных фигур?
7) Чему равна площадь всей фигуры, если фигура разделена на части?
IV. Закрепление.
1. Устно № 709, 711, 712, 714.
2. № 716, 717.
3. На повторение: № 731, 732.
V. Итог урока.
Ответить на вопросы или найти в учебнике ответ на вопросы к п. 18.
VI. Домашнее задание. п. 18 (до площади квадрата); № 736, 741 (а), 744, 745.
Урок № 68
Квадрат. Формула площади квадрата (п. 18)
Цели:научить находить площадь треугольника, квадрата.
Оборудование: карточки для проверки домашнего задания; кодоскоп, пленки с устными упражнениями; пленки с рис. 64, 65; фигуры прямоугольника, квадрата, опорный конспект.
Ход урока
I. Проверка домашнего задания.
1. Проверить фронтально только ответы.
2. Площадь одного квадрата равна 1 см2.
Какова площадь каждой фигуры.
Шесть человек за первыми партами выполняют работу по карточкам.
Карточки для учащихся.
Вариант I
1) Заполните таблицу, где а и b – стороны прямоугольника.
а | b | S | Р |
32 см | 7 см |
2) Начертите две неравные фигуры, имеющие одинаковую площадь 3 см2.
Вариант II
1) Заполните таблицу, где а и b – стороны прямоугольника.
а | b | S | Р |
27 см | 8 см |
2) Начертите две неравные фигуры, имеющие одинаковую площадь 4 см2.