Методика изучения избранного алгебраического материала

9.3.1. Методика введения понятия «Одночлен» и формирование умения находить его числовое значение.

К опорным зна­ниям относятся понятия алгебраического выражения, произве­дения алгебраических выражений, множителя (числового и буквенного); к умениям – запись алгебраического выражения по его элементам, выделение элементов заданного алгебраиче­ского выражения.

Актуализация знаний осуществляется посредством упражнений.

1. Из данного набора выбери­те такие алгебраические выражения, которые являются произведениями нескольких множителей: а) 5а2b; б) (7аb2 + с2):(5m2n); в) 8; г) 5а6bb4а; д) Методика изучения избранного алгебраического материала - student2.ru ; е) Методика изучения избранного алгебраического материала - student2.ru ж) Методика изучения избранного алгебраического материала - student2.ru

Указанному условию удовлетворяют алгебраические выра­жения: 5а2b; 8; 5а6bb4а; Методика изучения избранного алгебраического материала - student2.ru ; Методика изучения избранного алгебраического материала - student2.ru Скорее всего, учащиеся не назовут в числе требуемых алгебраических выражений 8; Методика изучения избранного алгебраического материала - student2.ru ; Методика изучения избранного алгебраического материала - student2.ru хотя некоторые могут догадаться, что Методика изучения избранного алгебраического материала - student2.ru можно представить как Методика изучения избранного алгебраического материала - student2.ru с. Взяв несколько алгебраических выражений, следует поупражняться в выделении их числового множителя, буквенных множителей, в записи по данным алгебраическим выражениям новых выражений.

2. Составьте новое алгебраическое выражение, используя выражения 3а2b и Методика изучения избранного алгебраического материала - student2.ru а. Возможные ответы учащихся: 3а2b + Методика изучения избранного алгебраического материала - student2.ru а; 3а2b – Методика изучения избранного алгебраического материала - student2.ru а; 3а2b Методика изучения избранного алгебраического материала - student2.ru Методика изучения избранного алгебраического материала - student2.ru а; 3а2b : Методика изучения избранного алгебраического материала - student2.ru а.

Далее учитель формулирует определение одночлена и предлагает упражнения на распознавание одночленов и выве­дение следствий из принадлежности данных алгебраических выражений одночленам.

3. Какие из указанных выражений являются одночленами: а) 5а3bсаb4 Методика изучения избранного алгебраического материала - student2.ru Методика изучения избранного алгебраического материала - student2.ru ; б) Методика изучения избранного алгебраического материала - student2.ru а; в) Методика изучения избранного алгебраического материала - student2.ru г) 34 Методика изучения избранного алгебраического материала - student2.ru Методика изучения избранного алгебраического материала - student2.ru д) 7аb2:n; д) – 5а6 Методика изучения избранного алгебраического материала - student2.ru b с2; е) – а3; ж) Методика изучения избранного алгебраического материала - student2.ru з) – mnx. Назовите числовые и буквенные множители одночленов.

4. Запишите несколько алгебраических выражений, явля­ющихся одночленами.

5. Запишите несколько одночленов, отличающихся только числовым коэффициентом.

6. Заполните пропуски: а) 12а3b4 = 2а… Методика изучения избранного алгебраического материала - student2.ru b2; б) – 24 m2b7p6 = 24bp Методика изучения избранного алгебраического материала - student2.ru

Далее можно использовать упражнения на запись словесных формулировок в форме алгебраических выражений и обратно.

7. Вместо словесной формулировки записать алгебраичес­кие выражения: а) удвоенное произведение чисел а и b; б) ут­роенное произведение квадрата числа а и числа b.

8. Пояснить выражения: а) 2а Методика изучения избранного алгебраического материала - student2.ru b; б) а Методика изучения избранного алгебраического материала - student2.ru 5b.

Например, выражение а Методика изучения избранного алгебраического материала - student2.ru 5b можно пояснить как: 1) про­изведение чисел а, 5 и b;2) произведение чисел а и 5b;3) пло­щадь прямоугольника со сторонами а и 5b.

Упражнения типа 7 и 8 способствуют и овладению методом решения текстовых задач с помощью уравнений, так как перевод словесных формулировок на язык чисел и букв и словесная интерпретация алгебраических выражений – важные составляющие метода решения задач с помощью уравнений.

Далее используются упражнения на нахождение числового значения выражения.

9. Найдите числовое значение одночлена: 1) 5mnx при m=3, n= Методика изучения избранного алгебраического материала - student2.ru ; x=8; 2) (– 0,25)а Методика изучения избранного алгебраического материала - student2.ru b при а=12; b=8. При выполнении подобных упражнений следует указать особенным учащимся на необходимость использования свойств и законов арифметических действий для рационализации вычислений.

Организация выполнения упражнений может быть различ­ной: решение у доски, самостоятельное решение, комментиро­ванное решение, одновременное выполнение упражнений на доске с привлечением слабых учащихся и самостоятельная рабо­та сильных учащихся и т.д.

Для домашнего задания можно использовать упражнения на запись чисел в стандартном виде, которое будет служить мо­тивом для введения на следующем уроке понятия стандартно­го вида одночлена.

9.3.2. Обобщение и систематизация знаний по теме: «Прогрессии».

Воспроизведение и коррекцию опорных знаний можно осуществить посредством упражнений на заполнение таблицы с последующим обсуждением результатов.

Вид прогрессии Формула общего члена Зависимость между соседними членами Сумма первых членов
Арифметическая      
Геометрическая      

Отметим, что арифметическая и геометрическая прогрес­сии дают пример изучения материала в сходных ситуациях, поэтому важное место в систематизации знаний о прогрессиях должны занять методы противопоставления и сопоставления. Обсуждение узловых вопросов основывается на выяснении при­чин различия и общего в прогрессиях.

Вопросы для обсуждения.

А). Назовите общее и различное в структуре определения арифметической и геометрической прогрессий.

Б). Дайте определение бесконечно убывающей геометричес­кой прогрессии.

В). Что называется суммой бесконечно убывающей геомет­рической прогрессии? Запишите ее формулу.

Г). Как доказать, что данная последовательность является арифметической (геометрической) прогрессией?

Д). С помощью стрелок покажите связи между указанными определениями, формулами (рис.7):

a an = an-1+ d Методика изучения избранного алгебраического материала - student2.ru а1, а2, …   …     an = al +d(n–1)  
      an, d      
                     
  an = Методика изучения избранного алгебраического материала - student2.ru (an-1+ an+1)   Признак арифметической прогрессии     Sn = Методика изучения избранного алгебраического материала - student2.ru (a1+ a2) n  
                   

3. Выпишите все определения, формулы по теме «Геомет­рическая прогрессия» и укажите зависимости между ними.

Упражнения 2 и 3 можно предложить учащимся выпол­нить самостоятельно с последующим обсуждением результатов всеми учащимися класса. Можно упражнение 2 выполнить коллективно, а упражнение 3 предложить в качестве самосто­ятельной работы.

Следующие этапы обобщающего урока реализуются с по­мощью упражнений, выполнение которых требует анализа и использования основных фактов, приводящих к новым связям и отношениям между изученными понятиями и теоремами.

4. Между числами 4 и 9 вставьте положительное число так, чтобы получилось три последовательных члена геометри­ческой прогрессии. Сформулируйте и решите аналогичную за­дачу применительно к арифметической прогрессии.

5. Определите числа a1, а2, а3 и а4, если a1, а2, а3 – последовательные члены геометрической прогрессии, а a1, а3 и а4 – арифметической прогрессии и а1+ а4= 14, а2 + а3 = 12.

7. Могут ли три положительных числа быть одновременно тремя последовательными членами арифметической и геомет­рической прогрессий?

8. Можно ли утверждать, что арифметическая и геометри­ческая прогрессии являются функциями? Если да, то к каким видам функций они относятся?

9. Известно, что an = 2n+1 – арифметическая прогрессия. Что общего и различного в графиках этой прогрессии и линей­ной функции f(х) = 2x+1?

10. Можно ли указать последовательности, являющиеся
одновременно арифметической и геометрической прогрессиями?

Формы выполнения упражнений могут быть различны: выполнение упражнений у доски, комментированное решение и т.д. Некоторые из приведенных упражнений могут быть вы­полнены учащимися самостоятельно, причем выполнение их может осуществляться в зависимости от возможностей школь­ников с применением карточек, содержащих пропущенные строки либо указания к их выполнению. Очевидно, что, чем ниже возможности школьника, тем обширнее для него должен быть набор рекомендаций (указаний к выполнению).

9.3.3. Проверка, оценка и коррекция знаний, умений и навыков по теме: «Умножение и деление рациональных чисел».

Проверка знания учащимися фактического материала, умения объяснять сущность основных понятий осуществляется в процессе беседы с последующим выполнением упражнений.

Вопросы для беседы

1. Сформулируйте правило умножения двух чисел с одинаковы­ми знаками. Приведите примеры.

2. Сформулируйте правило умножения двух чисел с разными знаками. Приведите примеры.

3. Чему равно произведение нескольких чисел, если одно из них нуль? При каких условиях a Методика изучения избранного алгебраического материала - student2.ru b = 0?

4. Чему равно произведение а Методика изучения избранного алгебраического материала - student2.ru (–1)? Приведите примеры.

5. Как изменится произведение при перемене знака одно­го из множителей?

6. Сформулируйте переместительный закон умножения.

7. Как формулируется сочетательный закон умножения?

8. Запишите, используя буквы, переместительный и соче­тательный законы умножения.

9. Как найти произведение трех, четырех рациональных чисел?

10. Ученик, выполняя упражнение на отыскание произве­дения 0,25 Методика изучения избранного алгебраического материала - student2.ru 15 Методика изучения избранного алгебраического материала - student2.ru 15 Методика изучения избранного алгебраического материала - student2.ru (–4), использовал следующую последова­тельность действий: (0,25 Методика изучения избранного алгебраического материала - student2.ru (–4)) Методика изучения избранного алгебраического материала - student2.ru 15 Методика изучения избранного алгебраического материала - student2.ru 15 = (–1) Методика изучения избранного алгебраического материала - student2.ru 15 Методика изучения избранного алгебраического материала - student2.ru 15 = –15 Методика изучения избранного алгебраического материала - student2.ru 15. Какие законы он использовал?

11. Какой множитель алгебраического выражения называ­ют коэффициентом?

12. Как найти коэффициент произведения, в котором не­сколько буквенных и числовых множителей?

13. Чему равен коэффициент выражения: a; – a; ab; – ab?

14. Сформулируйте распределительный закон умножения. Запишите его с помощью букв.

15. Какие слагаемые алгебраической суммы называют по­добными?

16. Объясните, что значит привести подобные слагаемые.

17. Объясните, с помощью каких законов выполняется при­ведение подобных слагаемых в выражении 5,2y – 8a – 4,8y – 2а.

18. Каково правило деления рациональных чисел с одина­ковыми знаками?

19. По какому правилу выполняют деление рациональных чисел с разными знаками?

20. В каком случае частное двух рациональных чисел рав­но нулю?

21. В каком порядке выполняют совместные действия с рациональными числами?

Отдельные вопросы могут быть предметом коллективного обсуждения, другие – листов взаимоконтроля учащихся, воз­можно на основе некоторых вопросов провести математический диктант и т.д.

Последующая серия упражнений направлена на контроль, оценку, коррекцию умений учащихся. Возможны различные фор­мы выполнения упражнений: самостоятельное решение, сопровождающееся самоконтролем учащихся, комментиро­ванное решение, выполнение упражнений на доске, устный опрос и т.д. Эта серия охватывает две группы упражнений. Первая группа не требует для выполнения мыслительной деятельности реконструктивного характера, выполнение второй группы пред­полагает реконструкцию знаний и умений по изучаемой теме.

I группа

1. Какие из указанных равенств верные:

1) (–9) Методика изучения избранного алгебраического материала - student2.ru (–8) = –72; 2) (–1,4) Методика изучения избранного алгебраического материала - student2.ru 0,5 = – 0,7;

3) 12 Методика изучения избранного алгебраического материала - student2.ru (–0,2) = –0,24; 4) (–3,2) Методика изучения избранного алгебраического материала - student2.ru (–2,1) = 6,72?

Выберите правильный ответ.

Ответ: 1); 2); 3); 4); верных равенств нет.

2. Не выполняя вычислений, определите, какое произведение положительно:

1) 0,26 Методика изучения избранного алгебраического материала - student2.ru (–17) Методика изучения избранного алгебраического материала - student2.ru (–52) Методика изучения избранного алгебраического материала - student2.ru (–34); 2) (–1) Методика изучения избранного алгебраического материала - student2.ru (–8) Методика изучения избранного алгебраического материала - student2.ru 0,4 Методика изучения избранного алгебраического материала - student2.ru Методика изучения избранного алгебраического материала - student2.ru Методика изучения избранного алгебраического материала - student2.ru (–3,4);

3) (–16) Методика изучения избранного алгебраического материала - student2.ru (–0,87) Методика изучения избранного алгебраического материала - student2.ru (– Методика изучения избранного алгебраического материала - student2.ru ) Методика изучения избранного алгебраического материала - student2.ru (–5); 4) 5 Методика изучения избранного алгебраического материала - student2.ru (–3,2) Методика изучения избранного алгебраического материала - student2.ru 0 Методика изучения избранного алгебраического материала - student2.ru (0,7).

Ответ: 1); 2); 3); 4).

3. Укажите выражения, имеющие равные коэффициенты:

1) 9ас и 3x(4y); 2) (–3) Методика изучения избранного алгебраического материала - student2.ru (–8cb) и 4х Методика изучения избранного алгебраического материала - student2.ru 6у;

3) Методика изучения избранного алгебраического материала - student2.ru аbс и 2,75xy; 4) 3,15аbс и 0,001аbс.

4. Какое из выражений содержит подобные слагаемые:

1) 7а – 12аb + 14; 2) – 0,5ху + 2,7kх – 0,5;

3) 3с – 2,7хус – Методика изучения избранного алгебраического материала - student2.ru ;4) 72ab – Методика изучения избранного алгебраического материала - student2.ru ab + 241?

Укажите правильный ответ.

Ответ: 1); 2); 4); выражений, содержащих подобные сла­гаемые, нет.

5. Укажите верные равенства:

1) –3 Методика изучения избранного алгебраического материала - student2.ru (11 + 17) = –3 Методика изучения избранного алгебраического материала - student2.ru 11 + 17;

2) (– 7,6 +14) Методика изучения избранного алгебраического материала - student2.ru (– 7) = – 7,6 Методика изучения избранного алгебраического материала - student2.ru (– 7) + 14 Методика изучения избранного алгебраического материала - student2.ru (– 7);

3) –1,5 Методика изучения избранного алгебраического материала - student2.ru (37–24) = –1,5 Методика изучения избранного алгебраического материала - student2.ru 37–1,5 Методика изучения избранного алгебраического материала - student2.ru 24.

6. Верно ли выполнено деление:

1) –7,2 : (–9) = 0,8; 2) 48 : (–8) = 6;

3)–5,6:7 = –8; 4) 4,2 : (–1) = – 4,2?

7. Не выполняя вычислений, укажите частное с отрица­тельным знаком:

1) –7,2 : ((–0,2) Методика изучения избранного алгебраического материала - student2.ru (–12)); 2) (l44 Методика изучения избранного алгебраического материала - student2.ru Методика изучения избранного алгебраического материала - student2.ru ) : 2,3;

3) (14,2 Методика изучения избранного алгебраического материала - student2.ru (–0,6)):(–8,49); 4) –2 Методика изучения избранного алгебраического материала - student2.ru : (–18,2 Методика изучения избранного алгебраического материала - student2.ru 100).

Ответ: 1); 2); 3); 4); отрицательных частных нет.

II группа

1. Определите знак выражения:

1) (–0,2) Методика изучения избранного алгебраического материала - student2.ru (– Методика изучения избранного алгебраического материала - student2.ru ):16 Методика изучения избранного алгебраического материала - student2.ru (–7 Методика изучения избранного алгебраического материала - student2.ru ):0,03 Методика изучения избранного алгебраического материала - student2.ru (–127);

2) Методика изучения избранного алгебраического материала - student2.ru : (– 0,09) Методика изучения избранного алгебраического материала - student2.ru 3,25 : (– Методика изучения избранного алгебраического материала - student2.ru ) Методика изучения избранного алгебраического материала - student2.ru 324 : (– 46,21).

2. Упростите выражение:

1) – 5,1 Методика изучения избранного алгебраического материала - student2.ru (–3х) Методика изучения избранного алгебраического материала - student2.ru 0,2х; 2) – 6,3a(–10bc) Методика изучения избранного алгебраического материала - student2.ru (–8d).

3. Выберите наибольшее и наименьшее число среди чисел
а, а2, а3, а4, а5, а6, а7 при а = – 5, а = 3.

4. Упростите выражение:

1) – х (у – 4) – 2(ху – 3) – 3х; 2) a(b + 3) – 3(2 – ab) + a.

Приведенная совокупность заданий и их после­довательность охватывают все уровни усвоения знаний. Выполнение всей совокупности заданий соответствует качественному усвоению знаний и умений и может быть оценено на «отлично». Усвоению знаний и умений на уровне их применения в ситуациях, не требующих реконструкции знаний и умений, соответствуют упражнения первой группы. Правильные ответы на вопросы характеризуют усвоение знаний на уровне воспроизве­дения. Оценка «удовлетворительно» может быть выставлена ученику, выполнившему большинство упражнений первой группы. Оценка «хорошо» соответствует правильно выполненному боль­шинству упражнений первой и второй групп.

Задания

1. Выберите конкретную тему коррекционно-развивающего курса алгебры основной школы. Изучите соответствующие разделы программы и учебника. Выявите методические особенности изучения темы. Разработайте фрагменты методики обучения теме. Подготовьте комплект карточек для коррекции знаний учащихся.

2. Посетите несколько уроков алгебры одного из специальных (коррекционных) учреждений VII вида вашего региона. Проведите анализ одного урока с точки зрения его образовательной, коррекционно-развивающей, воспитательной и практической направленности.

3. Одной из целей обучения математике является формирование математической культуры. Вычислительная культура – один из компонентов математической культуры. Предложите ваш вариант трактовки понятия «вычислительная культура». На каких этапах обучения математике особенных учащихся, при обучении какому содержанию возможна и целесообразна постановка цели «формирование вычислительной культуры»? Приведите конкретный пример с соответствующей системой заданий. Составьте список литературы по вопросам развития понятия о числе для внеклассного чтения особенных учащихся. Укажите, в каких классах она может быть использована.

ГЛАВА 10. ИЗБРАННЫЕ ВОПРОСЫ МЕТОДИКИ КОРРЕКЦИОННО-РАЗВИВАЮЩЕГО ОБУЧЕНИЯ ГЕОМЕТРИИ в основной школе.

Наши рекомендации