Короткое замыкание и включение на источник цепей C-L
Короткое замыкание в R-C цепи
В схеме на рис. 8.5 в результате коммутации рубильник замыкается, и образуется замкнутый на себя R-C контур.
До коммутации емкость полностью зарядилась до напряжения, равного ЭДС источника питания, то есть uc(0-) = E. После коммутации емкость полностью разряжается, следовательно, принужденный ток в R-C цепи и принужденное напряжение на конденсаторе равны нулю.
В цепи существует только свободный ток за счет напряжения заряженного конденсатора.
Запишем для R-C контура уравнение по второму закону Кирхгофа
.
Рис. 8.5
Ток через конденсатор .
Получим дифференциальное уравнение
. (8.3)
Решение этого уравнения .
Подставим значение свободного напряжения и производной от напряжения
в уравнение (8.3).
.
Уравнение называется характеристическим.
- корень характеристического уравнения;
- постоянная времени переходного процесса;
Переходный ток и переходное напряжение на конденсаторе по показательному закону уменьшаются до нуля (рис. 8.6).
Короткое замыкание в R-L цепи
На рис. 8.1 изображена электрическая цепь, в которой включен источник постоянной ЭДС. В результате коммутации рубильник замыкается и образуется замкнутый на себя R-L контур.
До коммутации по индуктивности протекал ток
Этот ток создавал постоянное магнитное поле в индуктивной катушке.
Рис. 8.1
Определим закон изменения тока в индуктивности после коммутации.
В соответствии с классическим методом
Принужденный ток после коммутации замыкается через рубильник, имеющий нулевое сопротивление, и через индуктивность не протекает. Индуктивный ток имеет только свободную составляющую
Магнитное поле, исчезая, индуктирует в индуктивной катушке ЭДС самоиндукции. Свободный ток в R-C контуре существует за счет этой электродвижущей силы.
Запишем уравнение для свободного тока в R-L контуре, используя второй закон Кирхгофа.
(8.1)
Ищем решение этого уравнения в виде экспоненты
.
Производная
.
Подставим значения свободного тока и производной тока в уравнение (8.1)
(8.2)
Уравнение (8.2), полученное из уравнения (8.1), называется характеристическим.
- корень характеристического уравнения.
- постоянная времени переходного процесса, измеряется в секундах.
Постоянная времени τ - это интервал времени, за который переходный ток уменьшается в e раз.
.
Постоянную интегрирования А определяем с помощью начального условия.
В соответствии с первым законом коммутации,
.
Получим
Напряжение на индуктивности .
На рис. 8.2 изображены кривые переходного тока в ветви с индуктивностью и переходного напряжения на индуктивности. Переходный ток и напряжение по экспоненте стремятся к нулю. В инженерных расчетах полагают, что через интервал времени, равный (4 ÷ 5)τ, переходный процесс заканчивается.