II. Работа по теме урока. 2. Перед выполнением следующих заданий нужно задать вопросы:
1. Устно № 475, 478 (б, в), 483.
2. Перед выполнением следующих заданий нужно задать вопросы:
а) Какое равенство называется уравнением?
б) Какое число называется корнем уравнения?
в) Что значит решить уравнение?
г) Как проверить, верно ли решено уравнение?
3. Решить: № 482 (а, б, г) – трое учеников одновременно решают у доски, затем класс проверяет их решение.
№ 485 (а, в); 487 (а).
4. На повторение: 499 (б), 501 (б).
Можно соединить графами.
III. Самостоятельная работа (по вариантам).
Вариант I | Вариант II |
1) Найти частное: | |
а) 6237 : 9 б) 61596 : 87 в) 15792 : 329 | а) 3424 : 8 б) 35088 : 86 в) 13608 : 243 |
2) Решить задачу из учебника | |
№ 512 (1) | № 512 (2) |
3) Частное меньше делимого в 12 раз. Можно ли найти делитель? | 3) Произведение в 27 раз больше одного из двух множителей. Можно ли найти другой множитель? |
4) Найти значение выражения: | |
а) 1326 : t, если t = 1; t = 6; t = 17. б) l : 15, если l = 0; l = 120; l = 210. | а) 1672 : р, если р = 1, р = 8, р = 19. б) k : 12, если k = 0; k = 108; k = 168. |
IV. Домашнее задание:п. 12 (2-я часть); № 524 (а, б, в), 516, 519, 527 (а, д).
Урок № 47
Деление. Свойства деления (п. 12)
Цели:научить находить неизвестный множитель, делимое, делитель.
Ход урока
I. Проверка домашнего задания.
Консультанты докладывают о выполнении домашнего задания. Отмечают аккуратно выполненные работы.
II. Устные упражнения.
1. № 493 (д) (какой ряд быстрее сосчитает?).
2. № 495.
3. Вопросы по таблице домашнего задания.
а) Во сколько раз скорость автомобиля «Волга» больше скорости почтового голубя?
б) Во сколько раз скорость улитки меньше скорости пчелы?
в) На сколько км/ч скорость автомобиля «Ока» больше скорости верблюда?
III. Работа по теме урока.
1. № 464, 482 (б), 487 (в. г), 490, 488, 471 (а, б), 477, 486 (а, б).
2. На повторение: № 499 (в), 501, 502 (а, г).
IV. Итог урока.
1. № 485 (б, г).
2. Повторить теоретический материал п. 12.
V. Домашнее задание:п. 12; № 524 (г, д); 521, 523, 526 (а); 554 (б, е).
Урок № 48
Деление (п. 12)
Цели:вырабатывать навык деления натуральных чисел и применения свойств деления.
Оборудование: плакат для логического теста.
Ход урока
I. Устные упражнения.
1. Среди чисел 10; 20; 0 найти корень уравнения: у × 10 = у : 10.
2. № 498.
3. Логический тест № 1. Анаграммой называется слово, в котором поменялись местами все или несколько букв в сравнении с исходным словом. Решить анаграмму – означает определить исходное слово.
Учитель вывешивает плакат с анаграммами.
Ответ: 1) прямая, луч, отрезок, периметр.
2) Лишнее слово «периметр», так как «периметр» – метрическая величина, а «прямая», «луч», «отрезок» – геометрические фигуры.
4. Логический тест № 2 (символико-графического типа).
II. Работа по теме урока.
1. Устно № 491, 478.
2. № 492 (а) – с разбором, № 492 (б) – самостоятельно, № 472.
3. На повторение: № 502, 511.
4. Самостоятельная работа обучающего характера.
(До начала урока пересадить учащихся так, чтобы в паре были «сильный» – «слабый»).
№ 472 (ж, л); 470; 487 (б, е); 479.
III. Домашнее задание.
п. 12; № 524 (е); 525; 522; 526 (б); 527 (в).
Урок № 49
Деление (п. 12)
Поэтическое звучание темы: Скорость, расстояние, время и таинственные отношения между ними
«Я люблю математику не только потому, что
Она находит применение в технике, но и потому,
Что она красива».
Петер Ропсе
Оборудование: тексты задач на плакатах; ксерокопии листов с домашним заданием; плакаты с высказываниями о задачах; костюм для дяди Степы-милиционера.
«Математическая задача иногда столь же увлекательна, как кроссворд, и напряженная умственная работа может быть столь же желанным упражнением, как стремительный теннис».
Д. Пойа
«Недостаточно лишь понять задачу, необходимо желание решить ее. Без сильного желания решить трудную задачу невозможно, но при наличии такового возможно. Где есть желание, найдется путь!»
Д. Пойа
«При решении задачи плохой план часто оказывается полезным, он может вести к лучшему плану».
Д. Пойа
«В задачах, которые ставит перед нами жизнь экзаменатором является сама природа».
У. Сойер
Ход урока
I. Устные упражнения.
На доске записаны краткие условия задач.
1. Из пунктов А и В навстречу друг другу выехали автомобиль со скоростью 60 км/ч и велосипедист со скоростью 15 км/ч. Встретятся ли автомобиль и велосипедист через 2 часа, если расстояние между пунктами 160 км? (Решить задачу двумя способами.)
2. Из лагеря геологоразведчиков выехал вездеход со скоростью 30 км/ч. Через 2 часа вслед за ним был послан другой вездеход. С какой скоростью он должен ехать, чтобы догнать первый через 4 часа после своего выхода? (Можно сделать чертеж к задаче.)