И, затем, вычислить матрицы

[X,Y]=meshgrid(x,y); % матрицы координат точек по осям Ox и Oy

В результате, матрицы X и Y будут содержать следующие первые восемь значений по строкам и столбцам:

Матрица X:

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3

Матрица Y:

-2 -2 -2 -2 -2 -2 -2 -2

-1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9

-1,8 -1,8 -1,8 -1,8 -1,8 -1,8 -1,8 -1,8

-1,7 -1,7 -1,7 -1,7 -1,7 -1,7 -1,7 -1,7

-1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6 -1,6

-1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5 -1,5

-1,4 -1,4 -1,4 -1,4 -1,4 -1,4 -1,4 -1,4

-1,3 -1,3 -1,3 -1,3 -1,3 -1,3 -1,3 -1,3

Используя данные матрицы, можно вычислить значения матрицы Z, следующим образом:

Z=exp(-X.^2-Y.^2);

и отобразить результат на экране

plot3(X,Y,Z);

И, затем, вычислить матрицы - student2.ru

Рис. 3.10. Пример отображения графика с помощью функции plot3()

Из приведенного рисунка видно, что функция plot3() отображает график в виде набора линий, каждая из которых соответствует сечению графика функции И, затем, вычислить матрицы - student2.ru вдоль оси Oy.

Такое представление графика не всегда удобно, т.к. набор одномерных не дает полное представление о характере двумерной плоскости. Более лучшей визуализации можно получить, используя функцию

mesh(X,Y,Z); % отображение графика в виде сетки

В результате получим следующий вид трехмерного графика (рис. 3.11).

Благодаря использованию функции mesh() получается график, образованный интерполяцией точек массивов X, Y и Z линиями по осям Ox и Oy. Кроме того, цветом указывается уровень точки по оси Oz: от самого малого значения (синего) до самого большого (красного) и производится удаление «невидимых» линий. Это позволяет лучше визуально оценивать структуру трехмерного графика по сравнению с функцией plot3(). Если же необходимо отобразить «прозрачный» график, то следует выключить режим удаления «невидимых» линий:

hidden off; % скрытые линии рисуются

В системе MatLab предусмотрена функция визуализации непрерывной поверхности в трехмерных осях

surf(X,Y,Z); % отображение непрерывной поверхности

В результате получается график, представленный на рис. 3.12.

И, затем, вычислить матрицы - student2.ru

Рис. 3.11. Результат работы функции mesh()

И, затем, вычислить матрицы - student2.ru

Рис. 3.12. Результат работы функции surf()

Функция surf() может использоваться в режиме

shading interp; % интерполяция тени на гранях графика

которая интерполирует цвет на гранях для получения более гладкого изображения поверхности (рис. 3.13). Также существует возможность менять цветовую карту отображения графика с помощью функции

colormap( <карта> ); % установка цветовой карты

Например, карта с именем hot, используемая по умолчанию может быть заменена на любую другую доступную (hot, hsv, gray, pink, cool, bone copper) или созданную самостоятельно.

И, затем, вычислить матрицы - student2.ru

Рис. 3.13. Результат работы функции surf() в режиме shading interp

Следует отметить, что все три функции plot3(), mesh() и surf() могут быть использованы и с одним аргументом Z, который интерпретируется как матрица со значениями точек по оси Oz.

Для масштабирования отдельных участков трехмерных графиков, также как и в случае с двумерными графиками, используется функция

axis([xmin xmax ymin ymax zmin zmax]);

с очевидным набором параметров.

Для оформления трехмерных графиков можно пользоваться описанными ранее функциями: text, xlabel, ylabel, zlabel, title, grid [on/off], subplot.

Наконец, для трёхмерных графиков существует возможность изменять точку их обзора, т.е. положение виртуальной камеры с помощью функции

view([az el]);

где az – угол азимута; el – угол возвышения. Изменение первого угла означает вращение плоскости xOy вокруг оси Oz против часовой стрелки. Угол возвышения есть угол между направлением на камеру и плоскостью xOy.

Наши рекомендации