Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле

Импульсный точечный источник теплоты, действует в течение некоторого времени Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru и имеет постоянную мощность Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru в течение этого времени. Площадь воздействия источника стремится к нулю, поток энергии бесконечен. Суммарная энергия, поступающая в тело, линейно возрастает, конечна и равна: Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru . Температурное поле имеет центральную симметрию, изометрические поверхности в полубосконечном теле – полусферы с радиусом Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru . Граничную поверхность тела будем считать адиабатическойб, ось Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru направлена внутрь тела. Температурное поле ИТИ можно найти путём сложения температурных полей двух постоянно действующих точечных источников: одного реального с мощностью Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru , и другого фиктивного, с мощностью Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru (стока), начинающего дополнительно действовать в той же точке через время Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru . В результате имеем:

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru (1)

Исследование температурного поля (1) несколько сложнее предыдущих случаев, так как имеется ещё один параметр – длительность импульса Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru . В основу анализа положим простейшую программу построения зависимости температуры от времени на фиксированном расстоянии Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru от точки воздействия при фиксированной длительности импульса Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru :

1 function [t,T]=Tpiti(tau,sh,tg,p,R,m)

2 %temp pole imp ist, tau- dlit imp, sh- shag po t,tg- konec int,p- moshnost R -tek.

3 v=mview(m);

4 eval(v)

5 T0=20;

6 tu=[1:1:tg];t=tu*sh;

7 tgr=fix(tau/sh)+1;

8 TT=p/(la*2*pi*R);

9 T1=TT.*erfc(R./(2*sqrt(at*t)));

10 Tn(tgr:tg)=T1(1:(tg-tgr+1));Tn(1:tgr-1)=0;

11 T=T1-Tn+T0;

Входными параметрами программы являются: tau - длительность импульса [c], sh – шаг по времени[c], целочисленная векторная переменная tg – количество шагов по времени, Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru - мощность источника [Вт], R – текущее расстояние до точки воздействия [см].

В строке 6 вычисляется вектор реального времени, а в строке 7 количество шагов вычисления внутри импульса. Вычисление температуры, создаваемой ПДИ (1а) осуществляется в строках 8,9. В строке 10 осуществляется сдвиг полученного массива значений температуры на величину длительности импульса, а в строке 11 происходит окончательное вычисление температуры T по (1б). Массивы t и T являются выходными параметрами подпрограммы. Приведённая подпрограмма позволяет вычислить для фиксированных значений Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru и Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru . Для того что бы исследовать влияние расстояния и длительности импульса на температурное поле включим эту подпрограмму в специальные циклические подпрограммы. Подпрограмма вычисления температурного поля для набора значений радиуса Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru :

1 function [t,T]=TpitiR(tau,sh,tg,p,R,m)

2 %temp pole imp ist, tau- dlit imp, sh- shag po t,tg- konec int,p- moshn, R-vek.

3 T=[];

4 n=length(R);

5 for i=1:n

6 Rt=R(i);

7 [t,Tv]=Tpiti(tau,sh,tg,p,Rt,m);

8 T=[T;Tv];

9 end

Входные и выходные параметры этой подпрограммы те же, что и в предыдущем случае, только Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru может быть вектором. В строке 4 определяется длина вектора Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru , которая задаёт число циклов. В цикле, строки 5-8, происходит обращение к предыдущей подпрограмме с различными значениями Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru , и накопление результатов в массиве Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru .

Подпрограмма вычисления температурного поля для набора значений длительности импульса Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru :

1 function [t,T]=TpitiTau(tau,sh,tg,p,R,m)

2 %temp pole imp ist, tau- dlit imp vek, sh- shag po t,tg- konec int,p- moshn vek, R-tek.

3 T=[];

4 n=length(tau);

5 k=length(p);

6 if k<n

7 p(k:n)=p(k);

8 end

9 for i=1:n

10 taut=tau(i);

11 pt=p(i);

12 [t,Tv]=Tpiti(taut,sh,tg,pt,R,m);

13 T=[T;Tv];

14 end

Эта подпрограмма аналогична предыдущей, только векторами могут быть переменные tau и p. В том случае, если размеры tau и p не совпадают в строках 5 – 8 предусмотрено их выравнивание.

Для вызова этих подпрограмм и задания начальных условий используется специальная программа:

1 function [t,T,Tm]=Tmpiti(tau,p,E,R,m)

2 %zavisimocti T ot t v tochkax R ITI: dlitelnjsti - tau, moshnoct - p;

3 v=mview(m);

4 eval(v)

5 T=[];

6 n=length(R);

7 k=length(tau);

8 if n==1 %R - chislo

9 if k==1 %tau - chislo

10 if tau==0 %tau=0

11 tmn=R^2/(6*at);sh=tmn/1000;tg=6000;tu=[1:1:tg];t=tu*sh;

12 Tv=Tpmtit(E,R,t,m); %odin MTI

13 else

14 sh=tau/1000;tg=6000;

15 if p==[] %formir p

16 p=E./tau;

17 end

18 [t,Tv]=Tpiti(tau,sh,tg,p,R,m); %odin impuls

19 end

20 else %tau -vek

21 tau=sort(tau);

22 if tau(1)==0 %tau(1)=0

23 taun(1:k-1)=tau(2:k);k=k-1;

24 tmn=min(taun);tmx=max(taun);tmxk=R^2/(6*at);

25 if tmx<tmxk

26 tmx=tmxk;

27 end

28 sh=tmn/1000;tg=fix(tmx/sh)*2;tu=[1:1:tg];t=tu*sh;

29 Tv=Tpmtit(E,R,t,m); %MTI

30 T=[T;Tv];

31 if p==[] %formir p

32 p=E./taun;

33 end

34 [t,Tv]=TpitiTau(taun,sh,tg,p,R,m);

35 else

36 tmn=min(tau);tmx=max(tau);tmxk=R^2/(6*at);

37 if tmx<tmxk

38 tmx=tmxk;

39 end

40 sh=tmn/1000;tg=fix(tmx/sh)*3;tu=[1:1:tg];t=tu*sh;

41 if p==[]

42 p=E./tau;

43 end

44 [t,Tv]=TpitiTau(tau,sh,tg,p,R,m);

45 end

46 end

47 else %R-vek;

48 if tau==0 %mgnov ist

49 [t,Tv]=Tmpt(E,R,m);

50 else

51 if p==[]

52 p=E./tau;

53 end

54 sh=tau/1000;tg=3000;

55 [t,Tv]=TpitiR(tau,sh,tg,p,R,m);

56 end

57 end

58 T=[T;Tv];

59 T=T';

60 Tm=max(T);

Данная программа позволяет проводить различные численные эксперименты, позволяющие исследовать температурные поля, создаваемые импульсными источниками тепла с различными параметрами. Входными параметрами программы являются:

- tau –длительность импульса, может содержать одно или несколько значений длительности в секундах, в том числе и нулевое;

- p-мощность (интенсивность) источника тепла в ваттах, может содержать несколько значений, но их число не должно превосходить число значений длительностей импульса, p может быть равно пустому множеству []:

- E– энергия импульса в джоулях, значение должно быть единственным и обязательно заданным, если в переменной tau задана нулевая длительность, либо если p=[];

-R – расстояние до точки воздействия в сантиметрах, может задаваться несколько не нулевых значений, но только в том случае если задано только одно значение tau, в противном случае R должно быть единственным и не равным нулю;

- m – имя материала.

Выходными параметрами являются: t – вектор моментов времени, T – вектор соответствующих значений температуры, Tm – вектор максимальных значений температуры, достигаемых при воздействии каждого импульса.

Зададим значение расстояние R=0,01см, мощность р=1000Вт и набор значений длительностей импульса Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru =(0.0001, 0. 0002, 0. 0003, 0. 0004, 0. 0005)с. Обратимся к программе:

>> R=0.01; p=1000; m=’Cu’;

>> tau=[0.0001:0.0001:0.0005];

>> [t,T,Tm]=Tmpiti(tau,p,E,R,m);

>> plot(t,T); grid on

В результате получим:

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru

Рис. 9

На рисунке 9 показаны зависимости температуры от времени. В каждом импульсе энергия нарастает:

>> E=p*tau

E =(0.1000, 0.2000, 0.3000, 0.4000, 0.5000)Дж.

Максимальные значения температуры достигаются в конце действия каждого импульса и составляют:

Tm = 1.0e+003 *(1.9870 2.5395 2.8123 2.9818 3.1000)C0.

В программу включены также, ранее описанные подпрограммы расчёта температурных полей мгновенного точечного источника. Это позволяет сравнить зависимости температуры от времени в заданной точке при действии импульсного и мгновенного источника. Если задано p=[], то программа автоматически вычисляет значения мощности для каждого значения длительности импульса, как p=E/tau, при этом получаются импульсы равной энергии, но различной мощности. Зададим R=0.03см и E=0.01Дж и набор длительностей импульса:

>>p=[];E=0.01; m=’Cu’;

>> tau=[0,0.00002,0.0001];

>> [t,T,Tm]=Tmpiti(tau,p,E,R,m);

>> plot(t,T); grid on

Максимальные значения температуры: Tm = 1.0e+003 *(2.8661 1.7924 0.6124)С0

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru

Рис. 10

Из приведённого рисунка следует, что при равной энергии, наибольшее значение температуры в точке соответствует МТИ и быстро убывает с увеличением длительности импульса. Если в тех же условиях задать малые длительности импульсов:

>> tau=[0,0.000001,0.000002]; что соответствует 0,1,2микросекундам

То на расстоянии R =0.0100см получим:

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru

Рис. 11

Как следует из рисунка 11, температурные поля ИТИ в этом случае практически совпадают с температурным полем МТИ. Если же уменьшить расстояние в 10 раз, то разница зависимостей температуры от времени вновь станет существенной рис. 12:

>> R=0.001;

>> [t,T,Tm]=Tmpiti(tau,p,E,R,m);

>> plot(t,T); grid on

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru

Рис. 12

Исследуем влияние расстояния на зависимости температуры от времени при фиксированных длительности импульса и мощности (энергии) импульса. Зададим:

>> E=0.001; tau=0.00003; m=’Cu’;

>>R= R=[0.002:0.002:0.008];

>> [t,T]=Tmpiti(tau,p,E,R,m);

>> plot(t,T); grid on

В результате получим:

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru

Рис. 13

Как следует из рисунка 13, максимальное значение температуры быстро убывает с расстоянием, причём максимум температуры наступает уже после окончания импульса.

Ниже приведены значения максимумов температуры, а во второй строке времена наступления этих максимумов в микросекундах.

Tm = 1.0e+003 *(1.6535 0.6379 0.3212 0.1826)

0.0301 0.0307 0.0322 0.0350

Как следует из приведённых данных это смещение не велико. Следует отметить так же, что на малых расстояниях температура достигает значений близких к предельным, а на больших, стадия выравнивания температуры начинается на участке её активного роста. Наибольший интерес представляет исследование положения изотермы плавления в зависимости от длительности и энергии импульса. Для определения положения изотермы можно воспользоваться программой нахождения решения уравнения (2) предыдущего раздела для ПДТИ, учитывая то, что максимум температуры при действии ИТИ достигается практически в конце действия импульса. Для решения этой задачи включим подпрограмму TpdiRs, описную в предыдущем разделе в циклическую программу:

function [R,Rm]=TpimpRTst(t,E,Ts,m)

%zavisimost pologenia R izotermi Ts ot vremeni-t PDI: moshnost-p,vektor vremeni-t.

v=mview(m);

eval(v)

R=[];

n=length(t);

k=length(E);

for j=1:k;

for i=1:n;

p=E(j)/t(i);

Rv(i)=TpdiRs(t(i),p,Ts,m);

end

R=[R;Rv];

end

R=R';

[Rm,f]=max(R);

stg=f*t(1)*1e6;

Rm=[Rm;stg];

Входные параметры программы:

t – вектор, содержащий набор длительностей импульса;

Е – набор энергий импульса;

Ts – температура изотермы;

m – имя материала/

Выходные параметры:

R – вектор положений изотермы с температурой Ts;

Rm – матрица, содержащая в первой строке максимумы расстояний положения изотермы Ts в сантиметрах, а во второй, соответствующие им длительности импульса в микросекундах.

Обращение к программе:

>> E=[0.001:0.002:0.007];Ts=Tpl;

>> t=[0.000001:0.000001:0.00008]; m='Cu';

>> [R,Rm]=TpimpRTst(t,E,Ts,m);

>> plot(t,R); grid on

>> Rm

Rm = 0.0029 0.0042 0.0049 0.0055

3.0000 6.0000 9.0000 12.0000

Температурное поле импульсного точечного источника теплоты (ИТИ) в полубесконечном теле - student2.ru

Рис. 14

Как видно из рисунка 14, каждому значению энергии соответствует некоторое оптимальное значение длительности импульса, при котором изотерма плавления продвигается вглубь материала на максимальное расстояние. Такой характер зависимости объясняется тем, что при длительностях импульса меньших оптимального значения большая часть тепла идёт на перегрев материала до температур существенно больших температуры плавления, а при больших длительностях большая часть тепла уходит на теплоотвод. Оптимальное значение длительности импульса с увеличением энергии смещается в сторону больших времён.

Наши рекомендации