Переходные процессы в цепях 1 и 2 порядка
Краткая теория:
Классический метод: Название метода «классический» отражает использование в нем решений дифференциальных уравнений с постоянными параметрами методами классической математики. Данный метод обладает физической наглядностью и удобен для расчета простых цепей (расчет сложных цепей упрощается операторным методом).
Этапы расчета переходного процесса в цепи классическим методом:
1. Найти независимые начальные условия, то есть, напряжения на ёмкостях и токи на индуктивностях в момент начала переходного процесса.
2. Далее необходимо составить систему уравнений на основе законов Кирхгофа, Ома, электромагнитной индукции и т.д., описывающих состояние цепи после коммутации, и исключением переменных получить одно дифференциальное уравнение, в общем случае неоднородное относительно искомого тока или напряжения . Для простых цепей получается дифференциальное уравнение первого или второго порядка, в котором в качестве искомой величины выбирают либо ток в индуктивном элементе, либо напряжение на емкостном элементе.
3. Далее следует составить общее решение полученного неоднородного дифференциального уравнения цепи в виде суммы частного решения неоднородного дифференциального уравнения и общего решения соответствующего однородного дифференциального уравнения.
4. Наконец, в общем решении следует найти постоянные интегрирования из начальных условий, т. е. условий в цепи в начальный момент времени после коммутации.
Применительно к электрическим цепям в качестве частного решения неоднородного дифференциального уравнения выбирают установившийся режим в рассматриваемой цепи (если он существует), т. е. постоянные токи и напряжения, если в цепи действуют источники постоянных ЭДС и токов, или синусоидальные напряжения и токи при действии источников синусоидальных ЭДС и токов. Токи и напряжения установившегося режима называют установившимися.
Общее решение однородного дифференциального уравнения описывает процесс в цепи без источников ЭДС и тока, который поэтому называют свободным процессом. Токи и напряжения свободного процесса называют свободными, а их выражения должны содержать постоянные интегрирования, число которых равно порядку однородного уравнения.
Операторный метод — это метод расчёта переходных процессов в электрических цепях, основанный на переносе расчёта переходного процесса из области функций действительной переменной (времени t) в область функций комплексного переменного (либо операторной переменной), в которой дифференциальные уравнения преобразуются в алгебраические.
Преобразование функций действительного переменного в операторную функцию производится с помощью методов операционного исчисления. Например, если в цепи имеется источник постоянной ЭДС E = 100В, то в операторной схеме замещения вместо неё будет операторная ЭДС .
Последовательность расчёта операторным методом:
1.Определяются независимые начальные условия;
2. Вычерчивается операторная схема замещения, при этом электрические сопротивления заменяются эквивалентными операторными сопротивлениями, источники тока и источники ЭДС заменяются соответствующими операторными ЭДС, при этом следует учесть, что на месте реактивных сопротивлений помимо операторных сопротивлений появляются дополнительные операторные ЭДС;
3. Находятся операторные функции токов и напряжений в цепи одним из методов расчёта электрической цепи с помощью решения обыкновенных алгебраических уравнений и их систем;
4. Производится преобразование найденных операторных функций токов и напряжений в функцию действительного переменного с помощью методов операционного исчисления.
Операторный метод позволяет производить расчёт сложных схем менее трудоёмко, чем классический метод.