Операции над множествами
Объединение двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А или множеству В. Обозначение: А В.
А В={x| х А или х В}.
Пересечение двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А и множеству В. Обозначение: А В.
А В={x| х А и х В}.
Разность двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А и не принадлежащие множеству В. Обозначение: А \ В.
А \ В={x| х А и х В}.
Обычно элементы множеств выбираются из некоторого достаточно широкого множества U, которое называется универсум. В связи с этим понятием можно ввести операцию дополнение.
Дополнением множества А называется множество, которое состоит из элементов универсума, не принадлежащих множеству А. Обозначение: .
=U \ A или ={x| х А и х U}.
Пример: U={1, 2, 3, 4, 5, 6, 7}, A={1, 2, 3, 4, 5}, В={2, 4, 6}.
А В = {1, 2, 3, 4, 5, 6} А В = {2, 4} А \ В = {1, 3, 5}
В \ А = {6} = {6, 7} = {1, 3, 5, 7}
Для наглядного изображения соотношений между множествами и изображения результатов операций над множествами используют диаграммы Эйлера.
Пример:
B A А В А В А \ В
Свойства операций над множествами.
Идемпотентность пересечения, объединения.
А А = А А А = А
Коммутативность пересечения, объединения.
А В = В А А В = В А
Ассоциативность пересечения, объединения.
(А В) С = А (В С) (А В) С = А (В С)
Законы поглощения.
(А В) А = А (А В) A = А
Свойства пустого множества.
А = А = А
Свойства универсума.
А U = A А U = U
Инволютивность.
= А
Законы де Моргана.
Свойства дополнения.
А = А = U
Выражения для разности.
А \ В = А
Основы математической логики
Логические представления – описание исследуемой системы, процесса, явления в виде совокупности сложных высказываний, составленных из простых (элементарных) высказываний и логических связок между ними. Логические представления и их составляющие характеризуются определенными свойствами и набором допустимых преобразований над ними (операций, правил вывода и т.п.), реализующих разработанные в формальной (математической) логике правильные методы рассуждений – законы логики
Логика высказываний
Способы (правила) формального представления высказываний, построения новых высказываний из имеющихся с помощью логически выдержанных преобразований, а также способы (методы) установления истинности или ложности высказываний изучаются в математической логике. Современная математическая логика включает два основных раздела: логику высказываний и охватывающую ее логику предикатов, для построения которых существуют два подхода (языка), образующих два варианта формальной логики: алгебру логики и логические исчисления. Между основными понятиями этих языков формальной логики имеет место взаимно однозначное соответствие.
Основными объектами традиционных разделов логики являются высказывания.
Высказывание – повествовательное предложение (утверждение, суждение), о котором имеет смысл говорить, что оно истинно или ложно. Все научные знания (законы и явления физики, химии, биологии и др., математические теоремы и т.п.), события повседневной жизни, ситуации формализуются в виде высказываний. Повелительные, вопросительные и бессмысленные предложения не являются высказываниями.
Примеры высказываний: дважды два – четыре, мы живем в 21 веке.
Для того чтобы далее оперировать этими предложениями как высказываниями, мы обязаны знать относительно каждого из них, истинно оно или ложно, т.е. знать их истинное значение (истинность).
Основные понятия логики высказываний
В формально-логических выводах используются истинные и ложные предложения.
Определение: повествовательное предложение, о котором можно однозначно сказать, истинно оно или ложно, называется высказыванием.
Примеры высказываний: "кит - животное", "все углы - прямые" и т. п. Первое из этих высказываний является, очевидно, истинным, а второе - ложным. Предложение "реши задачу", также как и "2+2", не является высказываем.
Определения математических понятий не являются высказываниями, т.к. это принятые соглашения.
Будем обозначать высказывания большими латинскими буквами: A, B, C,….
Элементарные, нерасчленяемые высказывания будем называть атомами. Употребляемые в обычной речи логические связки "и", "или", "если..., то...", "эквивалентно", частица "не" и т. д. позволяют из уже заданных высказываний строить новые, более "сложные" высказывания.
Аналогично тому, как в языке из простых предложений с помощью логических связок образуются сложные предложения, так и в логике высказываний из атомов можно образовывать составные высказывания.
Истинность или ложность получаемых таким образом высказываний зависит от истинности и ложности исходных высказываний и соответствующей трактовки связок как операций над высказываниями.
Рассмотрим определения логических операций, соответствующих логическим связкам.
Каждому высказывания можно сопоставить его истинностное значение, обозначаемое соответственно через И (если высказывание истинно), Л (если высказывание ложно).
Истинностное значение сложных высказываний зависит от истинностных значений высказываний, составлявших слоеное высказывание.
Эта зависимость устанавливается в данных ниже определениях я стращается в таблицах истинности.