Свойства математического ожидания
1. Теорема. Математическое ожидание постоянной величины равно этой величине.
Доказательство. Постоянную величину можно рассматривать как случайную дискретную величину, принимающую лишь одно возможное значение с вероятностью . Поэтому .
2. Теорема. Математическое ожидание суммы двух (или нескольких) случайных величин и равно разности их математических ожиданий:
Доказательство:
1) Пусть случайная величина принимает значения с вероятностями ( ), а случайная величина принимает значения с вероятностями ( ). Тогда возможными значениями случайной величины будут суммы , вероятности которых равны:
.
Как уже отмечалось ранее, все комбинации ( ) ( , ) можно считать допустимыми, причем, если сумма невозможна, то полагаем, что .
Сумма представляет собой вероятность события, состоящего в том, что случайная величина принимает значения при условии, что случайная величина примет одно из своих возможных значений (что достоверно); это сложное событие, очевидно, эквивалентно тому, что принимает значение и поэтому .
Аналогично .
Тогда .
2) Для нескольких случайных величин, например для трех , и , имеем:
, и т.д.
Следствие. Если – постоянная величина, то:
3. Теорема. Математическое ожидание произведения двух независимых случайных величин и равно произведению их математических ожиданий:
Доказательство. Пусть случайная величина принимает значения ( , ) ( ) и ( , ) ( ) – законы распределения случайных величин и . Так как и – независимы, то полный набор значений случайной величины состоит из всех произведений ( , ), причем вероятности этих значений по теореме умножения для независимых событий равны .
Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению математических ожиданий этих величин.
Действительно, например, для трех взаимно независимых случайных величин , и :
, и т.д.
Следствие. Постоянный множитель можно выносить за знак математического ожидания, т.е. .
Если – постоянная величина и – любая случайная величина, то, учитывая, что и – независимы, получим:
.
Следствие. Математическое ожидание разности двух случайных величин и равно разности их математических ожиданий: .
Доказательство.
.
Примеры
- Пусть случайная величина имеет дискретное равномерное распределение, то есть Тогда её математическое ожидание
равно среднему арифметическому всех принимаемых значений.
- Пусть случайная величина имеет непрерывное равномерное распределение на интервале , где . Тогда её плотность имеет вид и математическое ожидание равно
.
- Пусть случайная величина имеет стандартное распределение Коши. Тогда
,
то есть математическое ожидание не определено.