Импульс. Закон сохранения импульса
Сила трения
Сила трения является одной из самых распространенных механических сил. Она возникает каждый раз когда тело начинает двигаться или когда его пытаются сдвинуть с места. Существует четыре вида сил трения:
· сила трения покоя;
· сила трения скольжения;
· сила трения качения;
· сила вязкого трения (сила сопротивления).
Сила трения качения и сила вязкого трения в школьном курсе физики почти не рассматриваются. Сила трения качения обычно невелика и ей обычно пренебрегают по сравнению с остальными видами силы трения. Сила вязкого трения не рассматривается потому, что о ней в школьном курсе физики ничего существенного сказать нельзя в связи со сложностью используемого для этого математического аппарата.
Сила трения покоя.
Сила трения покоя возникает между соприкасающимися телами каждый раз, когда одно тело пытаются сдвинуть относительно другого, а оно не движется. Сила трения покоя направлена параллельно поверхности соприкосновения тел в сторону противоположную направлению внешней сдвигающей силы и по модулю равна проекции внешней сдвигающей силы на плоскость соприкосновения тел. Сила трения покоя возрастает с возрастанием внешней силы. Но если внешняя сила может возрастать неограниченно, то, как показывает практика, у силы трения покоя есть максимальное значение. Это максимальное значение определяется силой, с которой соприкасающиеся поверхности прижимаются друг к другу (силой нормального давления). Практика показывает, что максимальное значение силы трения покоя прямо пропорционально силе нормального давления. Коэффициент пропорциональности носит название коэффициента трения покоя:
Коэффициент трения покоя определяется материалом, из которого сделаны соприкасающиеся поверхности и степенью их обработки и не зависит от площади соприкосновения.
В общем случае для величины силы трения покоя справедливо неравенство:
Сила трения скольжения.
Если величина внешней сдвигающей силы превышает максимальное значение силы трения покоя, то начинается скольжения. Сила трения покоя при этом исчезает и появляется сила трения скольжения. В отличие от силы трения покоя сила трения скольжения постоянна и ее величина тоже пропорциональна силе нормального давления. Коэффициент пропорциональности называется коэффициентом трения скольжения:
Сила трения скольжения направлена также параллельно поверхности соприкосновения тел и в сторону противоположную скорости относительного движения соприкасающихся поверхностей. Коэффициент трения скольжения также определяется материалом и степенью обработки соприкасающихся поверхностей и не зависит от площади соприкосновения.
Максимальное значение силы трения покоя всегда несколько больше силы трения скольжения. На рисунке приведен примерный характерный график зависимости силы трения от внешней сдвигающей силы.
Однако разница между максимальной силой трения покоя и силой трения скольжения невелика. Поэтому в практике решения задач в школьном курсе физики этой разницей обычно пренебрегают и считают, что эти силы равны. При этом считается, что коэффициенты трения покоя и скольжения равны и они называются просто коэффициентом трения. А значит:
Импульс. Закон сохранения импульса
Пусть на тело массой m действует сила F. Запишем второй закон Ньютона для тела:
Преобразуем его:
Мы получили второй закон Ньютона, записанный в другом виде. Величина
называется импульсом тела. Импульс тела – величина векторная. Единица измерения импульса тела в системе СИ не имеет своего индивидуального наименования, а выражается через другие единицы: [кг·м/с] = [Н·с]. Величина - произведение силы на время ее действия называется импульсом силы. Итак, второй закон Ньютона можно записать через импульс:
Читается так: изменение импульса тела равно импульсу действующей на него силе. Если на тело действует несколько сил, то под F понимается их равнодействующая.
В этом и состоит закон сохранения импульса: импульс замкнутой системы тел есть величина постоянная. Аналитически закон сохранения импульса для системы тел записывается так:
Слева от знака равенства начальный импульс системы, а справа – конечный.
Абсолютно замкнутых систем тел не существует. Однако на практике часто законом сохранения импульса пользоваться можно. Перечислим случаи, в которых на практике можно использовать закон сохранения импульса:
1) Если система не замкнута, но время взаимодействия тел системы очень мало, а возникающие при этом внутренние силы значительно превышают внешние силы. Сюда входят все задачи, связанные со столкновениями тел, с разрывами гранат и так далее.
2) Если система не замкнута, но в проекции на какое-то направление внешние силы равны нулю. Тогда в проекции на это направление можно использовать закон сохранения импульса. Например, в поле тяжести Земли на все тела действует сила тяжести и никакая система тел не может быть замкнутой. Однако проекция силы тяжести на любое горизонтальное направление равна нулю и если силами сопротивления можно пренебречь, то в проекции на горизонтальное направление импульс должен оставаться постоянным.