Формализация эсихейрем с общими посылками

Эпихейремой в традиционной логике называется такой слож­носокращенный силлогизм, обе посылки которого представляют собой сокращенные простые категорические силлогизмы (энтимемы).

Схема эпихейремы, содержащей лишь общие и утвердитель­ные высказывания, обычно записывается следующим образом:

Все А суть С, так как А суть В.

Все D суть А. так как D суть Е.

______________________

Все D суть С.

Пример эпихейремы:

Благородный труд (А) заслуживает уважения (С), так как благородный труд (А) способствует прогрессу общества (В).

Труд учителя (D) есть благородный труд (А), так как труд учителя (D) заключается в обучении и воспитании подрастающего поколения (E).

_________

Труд учителя (D) заслуживает уважения (С).

Первая и вторая посылки эпихейремы представляют собой энтимемы, т, е. сокращенные категорические силлогизмы, у ко­торых одна из посылок опущена. Выразим полностью первую и вторую посылки эпихейремы.

1. Все В суть С. 2. Все Е суть А.

Все А суть В. Все D суть Е.

Все А суть С. Все D суть А.

Возьмем заключения первого и второго силлогизмов и сде­лаем их большей и меньшей посылками нового, третьего сил­логизма.

3. Все А суть С.

Все D суть А

._____________

Все D суть С.

Восстановим полностью эпихейрему.

1. Все, что способствует прогрессу общества (В), заслуживает уважения (С). Благородный труд (А) способствует прогрессу общества (В).

_____________________

Благородный труд (А) заслуживает уважения (С).

2. Обучение и воспитание подрастающего поколения (E) есть благородный труд (А).

Труд учителя (D) заключается в обучении и воспитании подрастающего по­коления (E).

__________________

Труд учителя (D) есть благородный труд (А).

Заключения первого и второго силлогизмов делаются посыл­ками третьего силлогизма.

3. Благородный труд (А) заслуживает уважения (С). Труд учителя (D) есть благородный труд (А).

_

Труд учителя (D) заслуживает уважения (С).

Приведем еще один пример эпихейремы.

Все рыбы (А) — позвоночные животные (С), так как рыбы (А) имеют скелет(В).

Все акулы (D) — рыбы (А), так как акулы (D) дышат жабрами (Е).

__________

Все акулы (D) — позвоночные животные (С).

В виде правила вывода восстановленную эпихейрему можно записать так:

Формализация эсихейрем с общими посылками - student2.ru

Это правило путем преобразований можно перевести в фор­мулу:

Формализация эсихейрем с общими посылками - student2.ru

В целях большей наглядности переставим посылки и запишем эту формулу так:

Формализация эсихейрем с общими посылками - student2.ru

Можно доказать, что эта формула является законом логики. Так же как и энтимемы, сложносокращенные силлогизмы значительно упрощают наши рассуждения.

Выводы, основанные на логических связях между суждениями (выводы логики высказываний)

Если в логике предикатов простые суждения расчленялись на субъект и предикат, то в логике высказываний суждения не расчленяются, а рассматриваются как простые суждения, из ко­торых с помощью логических связок (логических постоянных) образуются сложные суждения.

Правила прямых выводов логики высказываний позволяют из данных истинных посылок выводить истинное заключение. На основе правил прямых выводов построены чисто условные и условно-категорические, разделительные и разделительно-категорические, а также условно-разделительные (лемматические) умозаключения.

Наши рекомендации